首页 > 其他分享 >实验8-tensorboard

实验8-tensorboard

时间:2024-05-14 21:57:35浏览次数:19  
标签:name summary train 实验 tensorboard input tf scope

VMware虚拟机 Ubuntu20-LTS

python3.6

tensorflow1.15.0

keras2.3.1

运行截图:

 

 

 

代码:

实验8-1tensorboard可视化

import tensorflow as tf

#定义命名空间
with tf.name_scope('input'):
  #fetch:就是同时运行多个op的意思
  input1 = tf.constant(3.0,name='A')#定义名称,会在tensorboard中代替显示
  input2 = tf.constant(4.0,name='B')
  input3 = tf.constant(5.0,name='C')
with tf.name_scope('op'):
  #加法
  add = tf.add(input2,input3)
  #乘法
  mul = tf.multiply(input1,add)
with tf.Session() as ss:
  #默认在当前py目录下的logs文件夹,没有会自己创建
  result = ss.run([mul,add])
  wirter = tf.summary.FileWriter('logs/demo/',ss.graph)
  print(result)

 

实验8-2tensorboard案例

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys
import os
import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data
max_steps = 200  # 最大迭代次数 默认1000
learning_rate = 0.001   # 学习率
dropout = 0.9   # dropout时随机保留神经元的比例

data_dir = os.path.join('data', 'mnist')# 样本数据存储的路径
if not os.path.exists('log'):
    os.mkdir('log')
log_dir = 'log'   # 输出日志保存的路径
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
sess = tf.InteractiveSession()

with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
    
with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)
    
def weight_variable(shape):
    """Create a weight variable with appropriate initialization."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    """Create a bias variable with appropriate initialization."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def variable_summaries(var):
    """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
    with tf.name_scope('summaries'):
      # 计算参数的均值,并使用tf.summary.scaler记录
      mean = tf.reduce_mean(var)
      tf.summary.scalar('mean', mean)

      # 计算参数的标准差
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
      # 使用tf.summary.scaler记录记录下标准差,最大值,最小值
      tf.summary.scalar('stddev', stddev)
      tf.summary.scalar('max', tf.reduce_max(var))
      tf.summary.scalar('min', tf.reduce_min(var))
      # 用直方图记录参数的分布
      tf.summary.histogram('histogram', var)
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    """Reusable code for making a simple neural net layer.
    It does a matrix multiply, bias add, and then uses relu to nonlinearize.
    It also sets up name scoping so that the resultant graph is easy to read,
    and adds a number of summary ops.
    """
    # 设置命名空间
    with tf.name_scope(layer_name):
      # 调用之前的方法初始化权重w,并且调用参数信息的记录方法,记录w的信息
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights)
      # 调用之前的方法初始化权重b,并且调用参数信息的记录方法,记录b的信息
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases)
      # 执行wx+b的线性计算,并且用直方图记录下来
      with tf.name_scope('linear_compute'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.summary.histogram('linear', preactivate)
      # 将线性输出经过激励函数,并将输出也用直方图记录下来
      activations = act(preactivate, name='activation')
      tf.summary.histogram('activations', activations)

      # 返回激励层的最终输出
      return activations

hidden1 = nn_layer(x, 784, 500, 'layer1')

with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    tf.summary.scalar('dropout_keep_probability', keep_prob)
    dropped = tf.nn.dropout(hidden1, keep_prob)
    
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
with tf.name_scope('loss'):
    # 计算交叉熵损失(每个样本都会有一个损失)
    diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
    with tf.name_scope('total'):
      # 计算所有样本交叉熵损失的均值
      cross_entropy = tf.reduce_mean(diff)

tf.summary.scalar('loss', cross_entropy)

with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(learning_rate).minimize(
        cross_entropy)
with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      # 分别将预测和真实的标签中取出最大值的索引,弱相同则返回1(true),不同则返回0(false)
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      # 求均值即为准确率
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        
tf.summary.scalar('accuracy', accuracy)
# summaries合并
merged = tf.summary.merge_all()
# 写到指定的磁盘路径中
#删除src路径下所有文件
def delete_file_folder(src):
    '''delete files and folders'''
    if os.path.isfile(src):
        try:
            os.remove(src)
        except:
            pass
    elif os.path.isdir(src):
        for item in os.listdir(src):
            itemsrc=os.path.join(src,item)
            delete_file_folder(itemsrc) 
        try:
            os.rmdir(src)
        except:
            pass
#删除之前生成的log
if os.path.exists(log_dir + '/train'):
    delete_file_folder(log_dir + '/train')
if os.path.exists(log_dir + '/test'):
    delete_file_folder(log_dir + '/test')
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(log_dir + '/test')

# 运行初始化所有变量
tf.global_variables_initializer().run()

def feed_dict(train):
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train:
      xs, ys = mnist.train.next_batch(100)
      k = dropout
    else:
      xs, ys = mnist.test.images, mnist.test.labels
      k = 1.0
    return {x: xs, y_: ys, keep_prob: k}

for i in range(max_steps):
    if i % 10 == 0:  # 记录测试集的summary与accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))
    else:  # 记录训练集的summary
      if i % 100 == 99:  # Record execution stats
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        summary, _ = sess.run([merged, train_step],
                              feed_dict=feed_dict(True),
                              options=run_options,
                              run_metadata=run_metadata)
        train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
        train_writer.add_summary(summary, i)
        print('Adding run metadata for', i)
      else:  # Record a summary
        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
        train_writer.add_summary(summary, i)

train_writer.close()
test_writer.close()

 

标签:name,summary,train,实验,tensorboard,input,tf,scope
From: https://www.cnblogs.com/liucaizhi/p/18192345

相关文章

  • 实验3-特征处理
    VMware虚拟机Ubuntu20-LTSpython3.6tensorflow1.15.0keras2.3.1运行截图: 代码:实验3-1标准化fromsklearn.preprocessingimportStandardScalerfromsklearn.preprocessingimportMinMaxScalerfrommatplotlibimportgridspecimportnumpyasnpimportmatplo......
  • 实验4-交叉验证
    VMware虚拟机Ubuntu20-LTSpython3.6tensorflow1.15.0keras2.3.1运行截图: 代码:fromsklearn.model_selectionimporttrain_test_split,cross_val_score,cross_validate#交叉验证所需的函数fromsklearn.model_selectionimportKFold,LeaveOneOut,LeavePOut,Shuffle......
  • 实验6-使用TensorFlow完成线性回归
    VMware虚拟机Ubuntu20-LTSpython3.6tensorflow1.15.0keras2.3.1运行截图:  代码: %matplotlibinlineimportnumpyasnpimporttensorflowastfimportmatplotlib.pyplotaspltplt.rcParams["figure.figsize"]=(14,8)n_observations=100xs=np.li......
  • 实验7-使用TensorFlow完成MNIST手写体识别
    VMware虚拟机Ubuntu20-LTSpython3.6tensorflow1.15.0keras2.3.1运行截图:  代码:importosos.environ['TF_CPP_MIN_LOG_LEVEL']='2'importnumpyasnpimporttensorflowastffromtensorflow_core.examples.tutorials.mnistimportinput_datai......
  • 实验1-波士顿房价预测
    VMware虚拟机Ubuntu20-LTSpython3.6tensorflow1.15.0keras2.3.1运行截图 代码:fromsklearn.linear_modelimportLinearRegression,SGDRegressor,Ridge,LogisticRegressionfromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrain_tes......
  • 实验2-鸢尾花分类
    VMware虚拟机Ubuntu20-LTSpython3.6tensorflow1.15.0keras2.3.1运行截图: 代码:fromsklearnimportdatasetsimportmatplotlib.pyplotaspltimportnumpyasnpfromsklearnimporttree#Iris数据集是常用的分类实验数据集,#由Fisher,1936收集整理。Iris也称鸢......
  • 哈工大软件构造实验一报告
    2024年春季学期计算学部《软件构造》课程Lab1实验报告姓名 张皓涵学号 2022111897班号 2237102电子邮件 [email protected]手机号码 15134623385目录1实验目标概述 12实验环境配置 13实验过程 13.1MagicSquares 13.1.1isLegalMagicSquare() 13.1.2generateM......
  • 第十一周实验
    Pixso特点实时协作——让所有人聚焦同一个目标当面对一个复杂的设计项目时,通过链接邀请团队成员,进行多人云端协作设计,实时同步字号、边框、颜色等各种细节。智能UI设计工具——快速上手专业技能传统产品,往往要多个工具协作才能预期效果。而Pixso自带组件变体、自动布局等......
  • k8s——configmap-secret-nginx实验
    简介configmapsecret一、实验环境二、实验描述三、实验1:步骤1.使用configmap投射到nginx.conf配置文件到pod里1.1需要准备nginx.conf配置文件1.2将nginx.conf内容存放到configmap里(通过文件的方式,,这样简单一点)1.3启动ngnix的pod,使用configmap里的nginx.conf配置文件2.......
  • FPGA/EDA实验箱-竞赛普及版(ALTERA)
    型号:XQEP4CE-TEBV6.11、产品概述FPGA/EDA实验箱是一款FPGA教学实验系统,由FPGA开发板、显示屏、下载器、应用模块及相关实验配件组成;FPGA开发板采用底板+核心板的设计架构,核心板板采用是六层PCB设计,采用大容量管脚更多的BGA封装,F484封装,使整个核心板的性能和稳定性有了很大的提......