一 整体流程
1. 初始化pyFlink执行环境 2. 加载数据集 3. 执行数据分析 4. 导出分析结果 二 初始化执行环境2.1 初始化
参考代码如下 from pyflink.table import EnvironmentSettings, StreamTableEnvironment es = EnvironmentSettings.new_instance().in_batch_mode().build() tv = StreamTableEnvironment.create(environment_settings=es)2.2 其它
待补充其它初始化方法,如流处理等三 加载数据集
3.1 基于变量
参考代码如下 data = [['T1', 34, 'XY'],['T2', 34, 'NY'],['T3', 33, 'XX'],['T4', 33, 'JZ'],['T5', 33, 'SZ'],['T6', 33, 'PDS'],['T7', 32, 'XC'],['T8', 32, 'NY']] tbl = tv.from_elements(data, ['name','age','city'],['STRING','INT','STRING']) tv.create_temporary_view('itable', tbl) # 注册为flinksql能访问的对向3.2 基于pandas.DataFrame
dfa = pd.DataFrame(data, columns='name age city'.split()) tbl = tv.from_pandas(dfa)3.3 基于csv
csv_path = 'iexample.csv' csv_schema = 'name string, age int, city string' csv_sql = F"create table iTable({csv_schema}) with ('connector' = 'filesystem', 'path' = '{csv_path}', 'format' = 'csv'))" tv.execute_sql(csv_sql) tbl = tv.from_path('iTable') 经验1 包含表头的csv会报错 经验2 csv_sql 后面的with 中的引号必须是 单引号 双引号会报错 经验3 不要创建重名的表,会报错 此条有待进一步确认3.4 连接postgresql
from pyflink.table import EnvironmentSettings, StreamTableEnvironment es = EnvironmentSettings.new_instance().in_batch_mode().build() tv = StreamTableEnvironment.create(environment_settings=es) pg_schema = 'name STRING, age INT, city string' dsn = F'jdbc:postgresql://{host}:{port}/{database}' pg_sql = F"create table pg_table ({pg_schema})with ('connector'='jdbc','url'='{dsn}','table-name'='{table_name}','driver'='org.postgresql.Driver','username'='{user}','password'='{pwd}')" print(pg_sql) tv.execute_sql(pg_sql) tbl = tv.from_path('pg_table') tbl.limit(5).execute().print() 经验4 需要下载flink-connector-jdbc-*.jar文件 和 postgresql-*.jar文件 对应目录是pyflink安装目录的 lib文件夹下 经验5 连接依赖文件与数据库版本也有关系四 数据处理
4.1 简单处理
1) select
from pyflink.table.expressions import col, call tt = tbl.select(col("city")) tt.limit(3).execute().print()2)group_by
tbl.group_by(col('city')).select(col('city'),call("count", col('city')).alias('cnt')).execute().print() tv.register_table('itable', tbl) tv.sql_query('select city, count(*)cnt from itable group by city').execute().print()3)order_by
tbl.order_by(col('age').desc).execute().print()4)buildin function
tbl.select(call('avg',col('age')).alias('age_avg')).execute().print() tbl.select(call('sum',col('age')).alias('age_sum')).execute().print()5)normalized
@udf(result_type='Row<_name string, _age float>', func_type='pandas') def inormal(data: pd.DataFrame) -> pd.DataFrame: data['_age'] = (data['age']-data['age'].mean())/data['age'].std() return data[['name', '_age']] tbl.map(inormal).execute().print()
6)map & udf
@udf(result_type='Row<_name string, province string>', func_type='pandas') def itown(data: pd.DataFrame) -> pd.DataFrame: data['province'] = data.city.apply(lambda x: dct.get(x)) return data[['name', 'province']] tbl.map(itown).execute().print()
4.2 其它处理
待补充
五 输出
5.1 print
tbl.map(itown).execute().print()
5.2 CSV
# 定义输出 CSV 文件的 schema sink_schema = "name STRING, age int, _age float, city string, province string" # 定义输出 CSV 文件的目录 sink_path = "tmpfile" # 注册输出表 tv.execute_sql(f""" CREATE TABLE sink_table ( {sink_schema} ) WITH ( 'connector' = 'filesystem', 'path' = '{sink_path}', 'format' = 'csv' ) """) _age = tbl.map(inormal) _town = tbl.map(itown) t1 = tbl.join(_age).where(col('name')==col('_name')).select(col('name'), col('age'), col('_age'), col('city')) t2 = t1.join(_town).where(col('name')==col('_name')).select(col('name'), col('age'), col('_age'), col('city'), col('province')) tv.create_temporary_view('jtable', t2) # old api tv.register_table # 执行查询并将结果写入输出表 sql = 'INSERT INTO sink_table(name, age, _age, city, province) SELECT name, age, _age, city, province FROM jtable' tv.execute_sql(sql).wait()
经验6 csv输出路径只能指定目录 不能指定名称
经验7 数据库输出需要提前创建供写入的表
5.3 POSTGRESQL
pg_schema = "name STRING, age int, _age float, city string, province string" dsn = F'jdbc:postgresql://{host}:{port}/{database}' pg_sql = F"create table pg_table ({pg_schema})with ('connector'='jdbc','url'='{dsn}','table-name'='{table_name}','driver'='org.postgresql.Driver','username'='{user}','password'='{pwd}')" tv.execute_sql(pg_sql) # create sql = 'INSERT INTO pg_table(name, age, _age, city, province) SELECT name, age, _age, city, province FROM jtable' tv.execute_sql(sql).wait()
标签:总结,city,入门,age,tbl,sql,col,pyFlink,name From: https://www.cnblogs.com/ddzhen/p/18188654