一、图的基本运算
代数运算
- 加运算:C(x,y) = A(x,y) + B(x,y),其中 C(x,y)为输出图像,A(x,y)、B(x,y)为输入图像。重要应用是对所获取的同一场景的多幅图像求平均,常常用来有效的削弱图像的加性随机噪声。
- 减运算:C(x,y) = A(x,y) - B(x,y),其中 C(x,y)为输出图像,A(x,y)、B(x,y)为输入图像。又称为减影技术,指对同一景物在不同时间拍摄的图像或同一景物在不同波段的图像进行相减。差值图像提供了图像间的差异信息,能用以指导动态监测,运动目标性检测和跟踪,图像背景消除及目标识别等工作。
- 乘运算:C(x,y) = A(x,y) * B(x,y),其中 C(x,y)为输出图像,A(x,y)、B(x,y)为输入图像。可用来遮掉图像的某些部分。使用掩模图像(对需要被完整保留下来的区域,掩模图像上的值为 1,而对被抑制掉的区域则值为 0),去乘图像,可抹去图像的某些部分,即该部分值为 0。
- 除运算:C(x,y) = A(x,y) / B(x,y),其中 C(x,y)为输出图像,A(x,y)、B(x,y)为输入图像。图像相除又称比值处理,是遥感图像处理中常用的方法。可以利用比值图像使图像中各类地物均值拉开,方差缩小,从而易于区别各类,还能用于消除山影,云影及显示隐伏构造。
灰度变换
线性变换
分段线性变换
非线性灰度变换
图像的点运算
像素灰度插值的原理
二、傅里叶变换、小波变换
1 傅里叶变换
(傅里叶变换的目的、作用、特点等,以及傅里叶变换后去掉频谱图中的高频、低频后的变化)
1.1 目的
- 简化计算,也即傅里叶变换可将空间域中复杂的卷积运算转化为频率域中简单的乘积运算;
- 对于某些在空间域中难以处理或处理起来比较复杂的问题,利用傅里叶变换把用空间域表示的图像映射到频率域,在利用频率域滤波或频域分析方法对其进行处理和分析,然后再把频域中处理和分析的结果变换回空间域,从而可达到简化处理和简化的目的
- 特殊目的的应用需求,比如通过某些频率域的处理方法,实现对图像的增强,特征提取,数据压缩,纹理分析,水印嵌入等,从而实现在空间域难以达到的效果。
1.2 作用
(1)可以得出信号在各个频率点上的强度。
(2)可以将卷积运算化为乘积运算。
(3)傅氏变换和线性系统理论是进行图像恢复和重构的重要手段。
(4)傅立叶变换能使我们从空间域与频率域两个不同的角度来看待图像的问题,有时在空间域无法解决的问题在频域却是显而易见的。
1.3 特点
概念:
也称作傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。
优点:
傅立叶变换是将信号完全的放在频率域中分析,可以将一个时域信号转换成在不同频率下对应的振幅及相位,是连接时域与频域的桥梁。
缺点:
- 由于正弦波是无限宽度的,这使得被分析的信号也需要具有从负无穷大到正无穷大都有意义的特性,所以傅立叶变换不能很好的处理一些局部信号。比如,一个在局部范围内有非 0 值而其余所有地方都等于 0 的函数,它的频谱会呈现出一幅相当混乱的状况。这时,频域的信号反而不如时域的直观,频谱分析变得很艰难。
- 无法给出信号在每一个时间点的变化情况,并且对时间轴上任何点的突变都会影响整个频率的信号
1.4 频谱图
2 小波变换
(小波变换的应用)
概念:使用有限宽度基函数进行变换的方法。这些基函数不仅在频率上而且在位置上是变化的,这些有限宽度的波被称为 “小波”。基于它们的变换被称为 “小波变换” 。
特点:小波变换是以某些特定的函数为基(不止是一个),将数据信号展开成级数系列,它是时间和频率的局部变换,可同时在时域和频率中对数据进行多尺度联合分析,具有多尺度细化分析的功能。因此,我们可以在不同的分解层上和不同的小波基函数对信号进行有效的分析
3 联系与区别
联系:无论是傅立叶变换还是小波变换,其实质都是一样的,既:将信号在时间域和频率域之间相互转换,从看似复杂的数据中找出一些直观的信息,再对它进行分析。由于信号往往在频域有比在时域更加简单和直观的特性,所以,大部分信号分析的工作是在频域中进行的。
区别:
- 傅立叶变换作用在稳定信号上,小波变换对非稳定信号有很好的效果,这是 2 个变换的最根本的区别。
- 小波变换可以在频率上可以利用分解级数更细致的分辨率分析,傅立叶变换在固定的分辨率上进行分析的。
- 傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。
三、图像增强、图像复原、图像退化
四、边缘检测算子
Roberts算子
Prewitt算子
Sobel算子
Canny算子
检测过程