首页 > 其他分享 >AtCoder Beginner Contest 318 Ex Count Strong Test Cases

AtCoder Beginner Contest 318 Ex Count Strong Test Cases

时间:2024-05-10 12:44:05浏览次数:31  
标签:Count AtCoder 318 int res ll poly hat mod

洛谷传送门

AtCoder 传送门

首先做一些初步的观察:A 和 B 的解法是对称的,所以 A 对的方案数等于 B 对的方案数。同时若 A 和 B 同时对则每个置换环环长为 \(1\),方案数为 \(n!\)。

所以,若设 A 对的方案数为 \(x\),那么答案为 \(n!^2 - (x - n!) - (x - n!) - n! = n!^2 + n! - x\)。所以转化为算 \(x\)。

A 对当且仅当每个置换环的最大边刚好是编号最小的点的出边。设确定 \(p_i\) 后环长分别为 \(l_1, l_2, \ldots, l_m\),那么安排边权的方案数为 \(n! \prod\limits_{i = 1}^m \frac{1}{l_i}\),其中 \(n!\) 可以放到最后乘。

那么设环的 EGF 为 \(\hat F(x)\),有:

\[\hat F(x) = \sum\limits_{i \ge 0} \frac{(i - 1)!}{i \times i!} = \sum\limits_{i \ge 0} \frac{1}{i^2} \]

其中 \((i - 1)!\) 为长度为 \(i\) 的圆排列方案数。

设答案的 EGF 为 \(\hat G(x)\),有标号的组合对象拼接,可得:

\[\hat G(x) = \sum\limits_{i \ge 0} \frac{\hat F(x)^i}{i!} = \exp(\hat F(x)) \]

那么 \(x = n!^2 [x^n] \hat F(x)\)。

时间复杂度 \(O(n \log n)\)。

code
// Problem: Ex - Count Strong Test Cases
// Contest: AtCoder - THIRD PROGRAMMING CONTEST 2023 ALGO(AtCoder Beginner Contest 318)
// URL: https://atcoder.jp/contests/abc318/tasks/abc318_h
// Memory Limit: 1024 MB
// Time Limit: 3000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 1000100;
const ll mod = 998244353, G = 3;

inline ll qpow(ll b, ll p) {
	ll res = 1;
	while (p) {
		if (p & 1) {
			res = res * b % mod;
		}
		b = b * b % mod;
		p >>= 1;
	}
	return res;
}

ll n, iv[maxn], fac[maxn];

typedef vector<ll> poly;

int r[maxn];

inline poly NTT(poly a, int op) {
	int n = (int)a.size();
	for (int i = 0; i < n; ++i) {
		if (i < r[i]) {
			swap(a[i], a[r[i]]);
		}
	}
	for (int k = 1; k < n; k <<= 1) {
		ll wn = qpow(op == 1 ? G : qpow(G, mod - 2), (mod - 1) / (k << 1));
		poly pw(k);
		pw[0] = 1;
		for (int i = 1; i < k; ++i) {
			pw[i] = pw[i - 1] * wn % mod;
		}
		for (int i = 0; i < n; i += (k << 1)) {
			for (int j = 0; j < k; ++j) {
				ll x = a[i + j], y = pw[j] * a[i + j + k] % mod;
				a[i + j] = (x + y) % mod;
				a[i + j + k] = (x - y + mod) % mod;
			}
		}
	}
	if (op == -1) {
		ll inv = qpow(n, mod - 2);
		for (int i = 0; i < n; ++i) {
			a[i] = a[i] * inv % mod;
		}
	}
	return a;
}

inline poly operator * (poly a, poly b) {
	a = NTT(a, 1);
	b = NTT(b, 1);
	int n = (int)a.size();
	for (int i = 0; i < n; ++i) {
		a[i] = a[i] * b[i] % mod;
	}
	a = NTT(a, -1);
	return a;
}

inline poly mul(poly a, poly b) {
	int n = (int)a.size() - 1, m = (int)b.size() - 1, k = 0;
	while ((1 << k) <= n + m + 1) {
		++k;
	}
	for (int i = 1; i < (1 << k); ++i) {
		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (k - 1));
	}
	poly A(1 << k), B(1 << k);
	for (int i = 0; i <= n; ++i) {
		A[i] = a[i];
	}
	for (int i = 0; i <= m; ++i) {
		B[i] = b[i];
	}
	poly res = A * B;
	res.resize(n + m + 1);
	return res;
}

poly inv(poly &a, int m) {
	if (m == 1) {
		poly res;
		res.pb(qpow(a[0], mod - 2));
		return res;
	}
	poly b = inv(a, m >> 1), c(m), res(m);
	for (int i = 0; i < m; ++i) {
		c[i] = a[i];
		if (i < (m >> 1)) {
			res[i] = b[i] * 2 % mod;
		}
	}
	c = mul(c, mul(b, b));
	for (int i = 0; i < m; ++i) {
		res[i] = (res[i] - c[i] + mod) % mod;
	}
	return res;
}

inline poly inv(poly a) {
	int n = (int)a.size() - 1;
	int t = __lg(n + 1);
	if ((1 << t) < n + 1) {
		++t;
	}
	poly b(1 << t);
	for (int i = 0; i <= n; ++i) {
		b[i] = a[i];
	}
	b = inv(b, 1 << t);
	b.resize(n + 1);
	return b;
}

inline poly der(poly a) {
	int n = (int)a.size() - 1;
	poly res(n);
	for (int i = 1; i <= n; ++i) {
		res[i - 1] = a[i] * i % mod;
	}
	return res;
}

inline poly itg(poly a) {
	int n = (int)a.size() - 1;
	poly res(n + 2), I(n + 2);
	I[1] = 1;
	for (int i = 2; i <= n + 1; ++i) {
		I[i] = (mod - mod / i) * I[mod % i] % mod;
	}
	for (int i = 1; i <= n + 1; ++i) {
		res[i] = a[i - 1] * I[i] % mod;
	}
	return res;
}

inline poly ln(poly a) {
	int n = (int)a.size() - 1;
	poly res = itg(mul(der(a), inv(a)));
	res.resize(n + 1);
	return res;
}

poly exp(poly &a, int m) {
	if (m == 1) {
		poly res;
		res.pb(1);
		return res;
	}
	poly b = exp(a, m >> 1);
	b.resize(m);
	poly c = ln(b), d(m);
	for (int i = 0; i < m; ++i) {
		d[i] = (a[i] - c[i] + mod) % mod;
	}
	d[0] = (d[0] + 1) % mod;
	poly res = mul(b, d);
	res.resize(m);
	return res;
}

inline poly exp(poly a) {
	int n = (int)a.size() - 1;
	int t = __lg(n + 1);
	if ((1 << t) < n + 1) {
		++t;
	}
	poly b(1 << t);
	for (int i = 0; i <= n; ++i) {
		b[i] = a[i];
	}
	b = exp(b, 1 << t);
	b.resize(n + 1);
	return b;
}

void solve() {
	scanf("%lld", &n);
	iv[1] = fac[0] = 1;
	for (int i = 1; i <= n; ++i) {
		fac[i] = fac[i - 1] * i % mod;
	}
	for (int i = 2; i <= n; ++i) {
		iv[i] = (mod - mod / i) * iv[mod % i] % mod;
	}
	poly a(n + 1);
	for (int i = 1; i <= n; ++i) {
		a[i] = iv[i] * iv[i] % mod;
	}
	a = exp(a);
	ll ans = fac[n] * fac[n] % mod * a[n] % mod;
	ans = (fac[n] * fac[n] % mod + fac[n] - ans * 2 % mod + mod) % mod;
	printf("%lld\n", ans);
}

int main() {
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}

标签:Count,AtCoder,318,int,res,ll,poly,hat,mod
From: https://www.cnblogs.com/zltzlt-blog/p/18184082

相关文章

  • AGC005D ~K Perm Counting
    Statement:若一个有\(n\)个元素的排列\(P\)满足对于任意\(i(1\len\len)\)都有\(|P_i-i|\nek\),则这个排列是合法的。现给定\(n,k\),问有多少个合法的排列。Solution:神仙题啊。考虑容斥。钦定有\(i\)个位置不满足条件,即满足\(|P_i-i|=k\)。这里有一步......
  • LeetCode 2210. Count Hills and Valleys in an Array
    原题链接在这里:https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/题目:Youaregivena 0-indexed integerarray nums.Anindex i ispartofa hill in nums iftheclosestnon-equalneighborsof i aresmallerthan nums[i].......
  • java 多线程CountDownLatch
     CountDownLatch简介CountDownLatch 是Java中的一个同步工具类,可以用来确保一组线程等待其他线程完成各自工作后再继续执行。CountDownLatch的应用场景CountDownLatch可以被广泛应用于各种多线程协作的场景,例如:主线程等待多个子线程完成后再执行下一步操作。多个子任......
  • YC284A [ 2024054 CQYC省选模拟赛 T1 ] 数数(count)
    题意现在有四种物品,分别有\(n1,n2,n3,n4\)个,有多少种排列物品的方案使得任意两个相邻物品的种类不同。\(0\len1,n2\le500,0\len3,n4\le5\times10^4\)Sol注意到\(n1\),\(n2\)特别小。设四个物品分别为\(C,D,A,B\)。考虑先插入\(C,D\),再考虑\(A,......
  • ATcoder ABC 352 F - Estimate Order 搜索
    很恶心的一个搜索,当然好像不用搜索也能做。没啥好讲的,一个联通块大小>=2就要搜索找位置,联通块大小等于1的不用搜。能调出来也是真不容易。#include<bits/stdc++.h>#defineintlonglong#defineDBdoubleusingnamespacestd;intn,m,tsiz,yinum;constintN=23;intfa[......
  • CountSort
    有一种简单的排序算法叫作计数排序。这种算法对一个待排序表(用数组A[]表示)进行排序排序结果存储在另一个新的表中(用数组B[]表示),表中关键字为int型。必须注意的是,表中所有待排序的关键字互不相同,计数排序算法针对表中的每个关键字,扫描待排序表一趟,统计表中有多少个关键字比......
  • EXP-00056: ORACLE error 12154 encountered
    使用如下命令:--exp用户名/密码@数据库实例名file=导出文件名[参数]expscott/scott@orclfile=/expdat.dmpfull=y--正确方式expscott/scott@CONN_orclfile=/expdat.dmpfull=y出现了如下错误:EXP-00056:ORACLEerror12154encounteredORA-12154:TNS:couldnotr......
  • 忘记zabbix监控平台Admin用户密码:Incorrect user name or password or account is tem
    如下图(实在想不起密码不要紧我们直接重新设置它):1.登入zabbix数据库[root@SJYS-Test1~]#mysql-uroot-pEnterpassword:WelcometotheMariaDBmonitor.Commandsendwith;or\g.2.进入zabbix库,查询users用户表MariaDB[(none)]>usezabbix;MariaDB[zabbix]>select......
  • qoj1138 Counting Mushrooms
    交互题。有一个隐藏的01序列\(a\),你只知道\(a\)的长度,并记为\(n\)。保证\(a_1=0\)。你可以执行以下操作:询问一个序列\(b\),满足两两不同且长度在\([2,1000]\)之间。交互库会返回\(\sum[a(b_i)\not=a(b_{i+1})]\)。请在\(226\)次操作内求出\(a\)中\(0\)......
  • AtCoder Beginner Contest 352
    AtCoderBeginnerContest352A-AtCoderLine给\(N,X,Y,Z\)判断是否\(\min(X,Y)\leZ\le\max(X,Y)\)。模拟。点击查看代码#include<bits/stdc++.h>#defineintlonglongusingnamespacestd;intn,x,y,z;signedmain(){ cin>>n>>x>>y>......