首页 > 其他分享 >模板集合

模板集合

时间:2024-05-10 11:37:26浏览次数:26  
标签:return int void tr dfs ++ 集合 模板

hello~ 这里是nihachu(叫niki就好)!

这里是各种算法的模板集合,主要是方便自己背板子用的,后续会不定期更新,希望能帮到和我一样的小伙伴,也希望各路大神可以帮忙指正或补充,thanks~

(部分代码来自网络,若有侵权,请联系我删除,感谢!)

二叉树相关:

深度优先:

前序遍历(根,左子树,右子树)

void dfs(int x){
	printf("%d\n",x);
	if(ls[x]) dfs(ls[x]);
	if(rs[x]) dfs(rs[x]);
}

中序遍历(左子树,根,右子树)

void dfs(int x){
	if(ls[x]) dfs(ls[x]);
	printf("%d\n",x);
	if(rs[x]) dfs(rs[x]);
}

后续遍历(左子树,右子树,根)

void dfs(int x){
	if(ls[x]) dfs(ls[x]);
	if(rs[x]) dfs(rs[x]);
	printf("%d\n",x);
}

广度优先:

层次遍历(从上到下,从左到右依次输出同一层的节点):

void bfs(int x){
	q[++top] = x;
	for(int i = 1; i <= top; i ++){
		int now = q[i];
		printf("%d\n",now);
		if(ls[now]) q[++top] = ls[now];
		if(rs[now]) q[++top] = rs[now];
	}
}

动态规划:

01背包(已降维)

for(int i = 1; i <= n; i ++){
	for(int j = m; i >= w[i]; j --){
		dp[j] = max(dp[j],dp[j - w[i]] + v[i]);
	}
}

完全背包

for(int i = 1; i <= n ; i ++){
	for(int j = w[i]; i <= m; j ++){
		dp[j] = max(dp[j],dp[j - w[i]] + v[i]);
	}
}

背包计数

for(int i = 1; i <= n; i ++){
	for(int j = m; i >= w[i]; j --){
		dp[j] += dp[j - w[i]];
	}
}

(若要求恰好为m,则dp[0]初始化为1,其他均为0);

二进制拆分(用于多重背包)

for(int i = 1; i <= n1; i ++){
	scanf("%d %d %d",&a, &b, &c);
	for(int k = 1; k <= c; k <<= 1){
		v[++u] = k * a; w[u] = k * b;
		c -= k;
	}
	if(c) v[++u] = a * c,w[u] = b * c;
}

卡时间

快读

int read()
{
   int x=0,f=1;
   char ch=getchar();
   while(ch<'0'||ch>'9')
   {
       if(ch=='-')
           f=-1;
       ch=getchar();
   }
   while(ch>='0' && ch<='9')
       x=x*10+ch-'0',ch=getchar();
   return x*f;
}

快写

void write(int x)
{
    if(x<0)
        putchar('-'),x=-x;
    if(x>9)
        write(x/10);
    putchar(x%10+'0');
    return;
}

手动o2优化

#pragma GCC optimize(2)

并查集

查询 + 路径压缩

int find(int x){
	return fa[x] == x ? x : fa[x] = find(fa[x]);
}

合并x,y所属集合

void marge(int x, int y){
	int u = find(x), v = find(y);
	if(u == v) return;
	fa[u] = v;
}

合并x, y 所属集合(按秩合并)

void marge(int x, int y){
	int u = find(x), v = find(y);
	if(u == v) return;
	if(rk[u] > rk[v]) swap(u,v); // 把深度小的合并到深度大的上面; 
	fa[u] = v;
	rk[v] += rk[u] == rk[v]; //如果同级,则合并后深度加一,否则不变; 
}

图论

链式前向星

void add(int x, int y){
	to[++cnt] = y;
	nxt[cnt] = head[x];
	head[x] = cnt;
}

图的遍历

dfs:

void dfs(int x){
   vis[x] = 1; 
   printf("%d\n",x);
   for(int i = head[x];i;i = nxt[i])
	if(!vis[to[i]]) dfs(to[i]);
}

bfs :

void bfs(int x){
	z[++top] = x;
   for(int i = 1; i <= top; i ++){
     int now = z[top ++];
     printf("%d\n",now);
     for(int j = head[now]; j; j = nxt[j]){
     	if(!vis[to[j]])
        vis[to[j]] = 1, z[++top] = to[j];
     }
}

欧拉路径/回路

1)判断是不是欧拉路径/回路

for(int i = 64; i <= 125; i ++){
		if(du[i] % 2)  jud ++ ; //记录入度为奇数的点
	}
   if(!jud) //是欧拉回路
   if(jud == 2) //是欧拉路径
   if(jud && jud != 2)//啥也不是
}

2)欧拉路径/回路的遍历

void dfs(int x){
	for(int i = head[x]; i; i = nxt[i])
    if(!vis[i]) vis[i] = 1, dfs(to[i]);
   printf("%d",x);
   }

3)遍历环并记录长度

void dfs(int x,int dt){
	if(vis[x]){
		ans = min(ans,dt - d[x]);
	}
	else{
		vis[x] = true;
		d[x] = dt;
		dfs(to[x],dt + 1);
	}
}

拓扑排序

for(int i = 1; i <= n ; i ++) if(du[i] == 0) z[++top];
for(int i = 1; i <= top; i ++){
	for(int j = head[z[i]]; j; j = nxt[j]){
		du[to[j]] --;
        if(du[to[j]] == 0) z[++top] = to[j];
    }
}

tarjan

void tarjan(int u){
	dfn[u] = low[u] = ++dfs_clock;
	s.push(u);
	for(int i = head[u]; i; i = nxt[i]){
		int v = to[i];
		if(!dfn[v]){
			tarjan(v);
			low[u] = min(low[u],low[v]);
		}
		else if(!sccnum[v]) low[u] = min(low[u], dfn[v]);
	}
	if(low[u] == dfn[u]){
		scccnt ++;
		while(1){
			int x = s.top();
			s.pop();
			sccnum[x] = scccnt;
			sccsu[scccnt] += w[x];
//			sccsz[scccnt] ++;
			if(x == u) break;
		}
	}
}

tarjan + 拓扑排序 + dp

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int dfn[N],low[N],sccnum[N],sccsu[N],sccsz[N],scccnt,dfs_clock;
int head[N],nxt[N],to[N],cnt;
int afhe[N],afnx[N],afto[N],afcnt;
stack <int> s;
int n, m, du[N], val[N], v[N], w[N], ans;
queue<int> q;

void add(int x, int y){
	to[++cnt] = y;
	nxt[cnt] = head[x];
	head[x] = cnt;
}

void afad(int x, int y){
	afto[++afcnt] = y;
	afnx[afcnt] = afhe[x];
	afhe[x] = afcnt;
}

void tarjan(int u){
	dfn[u] = low[u] = ++dfs_clock;
	s.push(u);
	for(int i = head[u]; i; i = nxt[i]){
		int v = to[i];
		if(!dfn[v]){
			tarjan(v);
			low[u] = min(low[u],low[v]);
		}
		else if(!sccnum[v]) low[u] = min(low[u], dfn[v]);
	}
	if(low[u] == dfn[u]){
		scccnt ++;
		while(1){
			int x = s.top();
			s.pop();
			sccnum[x] = scccnt;
			sccsu[scccnt] += w[x];
//			sccsz[scccnt] ++;
			if(x == u) break;
		}
	}
}

void afbuild(){
	for(int i = 1; i <= n; i ++){
		for(int u = head[i]; u; u = nxt[u]){
			int v1 = to[u];
			if(sccnum[i] != sccnum[v1]){
				afad(sccnum[i],sccnum[v1]);
//				printf("%d %d %d %d e\n",i,v1,sccnum[i],sccnum[v1]);
				++du[sccnum[v1]];
			}
		}
	}
}

void topo(){
	for(int i = 1; i <= scccnt; i ++) if(du[i] == 0) q.push(i), val[i] += sccsu[i];
	while(!q.empty()){
		int x = q.front();
		q.pop();
//		printf("x = %d, val = %d\n",x,val[x]);
		for(int i = afhe[x]; i; i = afnx[i]){
			int v1 = afto[i];
			du[v1] --;
//			printf("%d %d\n",val[v1],val[x] + sccsu[v1]);
			val[v1] = max(val[v1],val[x] + sccsu[v1]);
//			printf("v1 = %d, val = %d\n",v1,val[v1]);
			if(du[v1] == 0){
				q.push(v1);
			}
		}
	}
}

int main(){
	scanf("%d%d",&n,&m);
	for(int i = 1; i <= n ; i ++)
	scanf("%d",&w[i]);
//	return 0;
	for(int i = 1, u, v; i <= m ; i ++){
		scanf("%d%d",&u,&v);
		add(u,v);
	}
//	return 0;
	for(int i = 1; i <= n ; i ++){
		if(!dfn[i]) tarjan(i);
	}
//	for(int i = 1; i <= n ; i ++){
//		printf("i = %d, sccnum = %d\n",i,sccnum[i]);
//	}
//	for(int i = 1; i <= scccnt; i ++){
//		printf("num = %d, sum = %d\n",i,sccsu[i]);
//	}
	afbuild();
	topo();
	for(int i = 1; i <= scccnt; i ++) ans = max(ans,val[i]);
	printf("%d\n",ans);
	return 0;
}
			

数据结构

倍增求LCA


void dfs(int s, int fath){
	f[s][0] = fath;
	dep[s] = dep[fath] + 1;
	for(int u = 1; u <= 20; u ++){
		f[s][u] = f[f[s][u - 1]][u - 1];
	}
	for(int i = head[s]; i; i = nxt[i]){
		int t = to[i];
		if(t == fath) continue;
		dis[t] = dis[s] + v[i];
		dfs(t,s);
	}
}

int lca(int x, int y){
	if(dep[x] < dep[y]){
		swap(x,y);
	}
	for(int i = 20; i >= 0; i --){
		if(dep[f[x][i]] >= dep[y]) x = f[x][i];
	}
	if(x == y) return x;
	for(int i = 20; i >= 0; i --){
		if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
	}
	return f[x][0];
}

void ask(int x, int y, int lca){
	printf("%d\n",dis[x] + dis[y] - 2 * dis[lca]);
	return;
}

树状数组


int lowbit(int x){
	return x & (-x);
}

void add(int x, int y){
	for(int i = x; i <= n; i += lowbit(i)){
		c1[i] += y;
		c2[i] += y * x;
	}
}

int query(int x){
	int res = 0;
	for(int i = x; i ; i -= lowbit(i)){
		res += c1[i] * (x + 1) - c2[i];
	}
	return res;
}

  ans = query(r) - query(l));
			

二维树状数组

int lowbit(int x){
	return x & (-x);
}

void add(int x,int y, int z){
	for(int i = x; i <= n ; i += lowbit(i)){
		for(int u = y; u <= m; u += lowbit(u)){
			c1[i][u] += z;
			c2[i][u] += z * x;
			c3[i][u] += z * y;
			c4[i][u] += z * x * y;
		}
	}
}

int query(int x, int y){
	int res = 0;
	for(int i = x; i; i -= lowbit(i)){
		for(int u = y;u; u -= lowbit(u)){
			res += (x + 1)*(y + 1)*c1[i][u] - (y + 1)*c2[i][u] - (x + 1)*c3[i][u] + c4[i][u];
		}
	}
	return res;
}

ans = query(a - 1,b - 1) + query(c,d) - query(a - 1,d) - query(c,b - 1);

单调队列

//n为数据个数,m为窗口长度; 
for(int i = 1; i <= n; i ++){
	if(q[head] <= i - m) head ++;
	while(head <= tail && a[q[tail]] < a[i]) tail --;
	q[++tail] = i;
	ans[i] = a[q[head]];
}
for(int i = m ; i <= n ; i ++){
	//对每个窗口中已选出的数据进行处理 ; 
}

ST表

void pre() {
    logn[1] = 0;
    logn[2] = 1;
    for (int i = 3; i <= N - 1; i++) { //注意这里一定是N - 1 绝对不能是N
        logn[i] = logn[i / 2] + 1;
    }
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &st[i][0]);
    pre();
    for (int u = 1; u <= 20; u++) {
        for (int i = 1; i + (1 << u) - 1 <= n; i++) {
            st[i][u] = max(st[i][u - 1], st[i + (1 << (u - 1))][u - 1]);
        }
    }
    for (int i = 1; i <= m; i++) {
        scanf("%d%d", &l, &r);
        int k = logn[r - l + 1];
        printf("%d\n", max(st[l][k], st[r - (1 << k) + 1][k]));
    }
    return 0;
}

二维st表

scanf("%d%d%d",&n,&m,&k1);
	for(int i = 1; i <= n ; i ++){
		for(int u = 1; u <= m; u ++){
			scanf("%d",&st[i][0][u][0]);
		}
	}
	logn[1] = 0;
	logn[2] = 1;
	for(int i = 3; i <= N - 1; i ++){
		logn[i] = logn[i / 2] + 1;
	}
	
	for(int k = 0; k <= 20; k ++){
		for(int h = 0; h <= 20; h ++){
			if(!k && !h) continue;
			for(int i = 1; i + (1 << k) - 1 <= n; i ++){
				for(int u = 1; u + (1 << h) - 1 <= m; u ++){
					if(k) st[i][k][u][h] = max(st[i][k - 1][u][h],st[i + (1 << (k - 1))][k - 1][u][h]);
					else st[i][k][u][h] = max(st[i][k][u][h - 1],st[i][k][u + (1 << (h - 1))][h - 1]);
//					st[i][k][u][h] = max({st[i][k - 1][u][h - 1], 
//										 st[i + (1 << (k - 1))][k - 1][u][h - 1],  
//										 st[i][k - 1][u + (1 << (h - 1))][h - 1],  
//										 st[i + (1 << (k - 1))][k - 1][u + (1 << (h - 1))][h - 1]});
				}
			}
		}
	}
	for(int i = 1,x1,y1,x2,y2; i <= k1; i ++){
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		int k1 = logn[x2 - x1 + 1];
		int k2 = logn[y2 - y1 + 1];
		printf("%d\n",max({st[x1][k1][y1][k2],
						  st[x2 - (1 << k1) + 1][k1][y1][k2],
						  st[x1][k1][y2 - (1 << k2) + 1][k2],
						  st[x2 - (1 << k1) + 1][k1][y2 - (1 << k2) + 1][k2]}));
	}

分块

scanf("%lld%lld",&n,&m);
	for(int i = 1; i <= n ; i ++){
		scanf("%lld",&a[i]);
		sum1[i] = sum1[i - 1] + a[i];
	}
	k = sqrt(n);
	for(int i = 1; i <= n / k + 1 ; i ++){
		for(int u = 1; u <= k && u <= n; u ++){
			pos[u + (i - 1) * k] = i;
			if(!pl[i])pl[i] = u + i * k - k;
			pr[i] = min(u + i * k - k,n);
		}
		sum[i] = sum1[pr[i]] - sum1[pl[i] - 1];
	}
for(int u = 1; u <= m ; u ++){
		scanf("%lld%lld%lld",&opt,&l,&r);
		if(opt == 1){
			scanf("%lld",&c);
			if(pos[r] - pos[l] > 1){
				int l1 = pos[l] + 1;
				while(l1 < pos[r]) tag[l1] += c,l1 ++;
				for(int i = l; i <= pr[pos[l]]; i ++) a[i] += c,sum[pos[i]] += c;//printf("%d %d\n",i,a[i]);
				for(int i = r; i >= pl[pos[r]]; i --) a[i] += c,sum[pos[i]] += c;//printf("%d %d\n",i,a[i]);
			}
			else for(int i = l; i <= r; i ++) a[i] += c,sum[pos[i]] += c;
		}
else{
			ans = 0;
			if(pos[r] - pos[l] > 1){
				int l1 = pos[l] + 1;
				while(l1 < pos[r]){
					ans = ans + sum[l1] + tag[l1] * (pr[l1] - pl[l1] + 1), l1++;
				}
				for(int i = l; i <= pr[pos[l]]; i ++) ans += a[i] + tag[pos[i]];//printf("%d %d\n",i,ans);
				for(int i = r; i >= pl[pos[r]]; i --) ans += a[i] + tag[pos[i]];//printf("%d %d\n",i,ans);
			}
			else for(int i = l; i <= r; i ++) ans += a[i] + tag[pos[i]] ;
			printf("%lld\n",ans);
		}

数论

快速幂

注意:不开ll会炸

long long quickpow(long long a, long long b, long long n){
	long long res = 1;
	while(b){
		if(b % 2 == 1) res = res * a % n;
		a = a * a % n;
		b /= 2;
	}
	return res % n;
}

矩阵快速幂

const int mod = 1e9 + 7;
const int lim = ;
long long n;

struct mat{
	ll m[lim + 2][lim + 2];
};
mat f, ans, t, f1;

void matinit(mat &x){
	for(int i = 1; i <= lim; i ++){
		for(int u = 1; u <= lim; u ++){
			if(i == u) x.m[i][u] = 1ll;
			else x.m[i][u] = 0ll;
		}
	}
}

mat matmul(mat x, mat y){
	mat z;
	memset(z.m,0,sizeof(z.m));
	for(int i = 1; i <= lim ; i ++){
		for(int k = 1; k <= lim; k ++){
			if(x.m[i][k]){
				for(int u = 1; u <= lim; u ++){
					z.m[i][u] += x.m[i][k] % mod * y.m[k][u] % mod;
					z.m[i][u] %= mod;
				}
			}
		}
	}
	return z;
}

mat matquickpow(mat a, long long b){
	mat res;
	matinit(res);
	while(b){
		if(b & 1) res = matmul(res,a);
		a = matmul(a,a);
		b >>= 1;
	}
	return res;
}

欧拉筛

void getprime(){
	for(int i = 2; i <= n ; i ++){
		if(pflag[i] == false)	pri[++top] = i;
		for(int q = 1; pri[q] * i <= n ; q ++){
			pflag[pri[q] * i] = true;
			if(i % pri[q] == 0) break;
		}
	}
}

算术基本定理

for(int i = 2; i * i <= A ; i ++){
		if(A % i != 0) continue;
		int num = 0;
		while(A % i == 0){
			A /= i;
			num ++;
		}
		printf("%d %d\n",i,num);
		work(i,B * num + 1);
	}
	if(A > 1) printf("%d %d",A,1);

exgcd

void exgcd(ll a, ll b, ll &x, ll &y){
	if(!b){x = 1, y = 0; return;}
	exgcd(b, a % b, y, x);
	y -= x * (a / b);
}

lucas定理

ll C(ll n, ll m,ll mod){
	if(m > n) return 0;
	return jie[n] * qpow(jie[m],mod - 2, mod) % mod * qpow(jie[n - m],mod - 2, mod) % mod;
}

ll lucas(ll n, ll m,ll mod){
	if(m == 0) return 1;
	return C(n % mod, m % mod,mod) * lucas(n / mod, m / mod,mod) % mod;
}

中国剩余定理

ll crt(){
	ll ans = 0;
	for(int i = 1; i <= 4; i ++){
		ll x, y; exgcd(mod / b[i],b[i],x,y);
		x = (x  + b[i]) % b[i];
		a[i] = (a[i] + b[i]) % b[i];
		ans = (ans + qmul(mod / b[i] * x, a[i])) % mod;
	}
	return ans % mod;
}

线性求逆元

inv[1] = 1;
    for (int i = 2; i <= n; i++) {
        inv[i] = (p - p / i) * inv[p % i];
        inv[i] %= p;
    }

求一个数的欧拉函数

int phi(int n){
    int ans=n,num=1;
    for(int i=2;i*i<=n;i++)
    {
        if(n%i)continue;
        ans=ans/i*(i-1);
        while(!(n%i))n/=i;
    }
    if(n^1) ans=ans/n*(n-1);
    return ans;
}

线性筛欧拉函数

void init(int n){
    phi[1]=1;
    for(int i=2;i<=n;i++){
        if(!vis[i])p[++cnt]=i,phi[i]=i-1;
        for(int j=1;j<=cnt&&i*p[j]<=n;j++){
            vis[i*p[j]]=1;
            if(!(i%p[j])){
                phi[i*p[j]]=phi[i]*p[j];
                break;
            }
            phi[i*p[j]]=phi[i]*phi[p[j]];
        }
    }
}

字符串

哈希(习惯性采用双哈希)

for (int i = 1; i <= n; i++) {
    cin >> s;
    unsigned long long t1 = 0, t2 = 0;
    for (int u = 0; u < s.size(); u++) {
        t1 = s[u] * p1 + t1 * p1;
        t2 = s[u] * p2 + t2 * p2;
    }
    hash1[i] = t1 + t2;
}

KMP

void kmp1(){
	int j = 0;
	for(int i = 2; i <= lb; i ++){
		if(j&& b[i] != b[j + 1]) j = kmp[j];
		if(b[i] == b[j + 1]) j ++;
		kmp[i] = j;
	}
	j = 0;
	for(int i = 1; i <= la; i ++){
		while(j && a[i] != b[j + 1]) j = kmp[j];
		if(a[i] == b[j + 1]) j ++;
		if(j == lb){
			cnt ++;
			j = kmp[j];
		}
	}
}

trie树

void triein(string s) {
    int l = s.size();
    int p = 0;
    for (int i = 0; i < l; i++) {
        int c = s[i] - 'a';
        if (!nex[p][c])
            nex[p][c] = ++cnt;
        p = nex[p][c];
        //		printf("1 %d %d %d\n",i,c,nex[p][c]);
    }
    ++exist[p];
}

int triequery(string s) {
    int l = s.size();
    int p = 0;
    int tot = 0;
    for (int i = 0; i < l; i++) {
        int c = s[i] - 'a';
        p = nex[p][c];
        //执行操作
    }
    return tot;
}

AC自动机

struct trie {
    int fail, exist, nex[27];
    bool vis;
};
trie tr[N];

void build(string s) {
    int p = 0;
    int l = s.size();
    for (int i = 0; i < l; i++) {
        int c = s[i] - 'a';
        if (!tr[p].nex[c])
            tr[p].nex[c] = ++cnt;
        p = tr[p].nex[c];
    }
    tr[p].exist++;
}

void getfail() {
    queue<int> q;
    for (int i = 0; i < 26; i++)
        if (tr[0].nex[i])
            q.push(tr[0].nex[i]);
    //	for(int i = 0; i < )
    while (!q.empty()) {
        int now = q.front();
        q.pop();
        //		printf("now = %d\n",now);
        for (int i = 0; i < 26; i++) {
            if (!tr[now].nex[i])
                tr[now].nex[i] = tr[tr[now].fail].nex[i];
            else
                tr[tr[now].nex[i]].fail = tr[tr[now].fail].nex[i], q.push(tr[now].nex[i]);
        }
    }
}

int AC(string s) {
    int l = s.size();
    int res = 0;
    int p = 0;
    for (int i = 0; i < l; i++) {
        int c = s[i] - 'a';
        p = tr[p].nex[c];
        for (int u = p; tr[u].exist != -1; u = tr[u].fail) {
            res += tr[u].exist;
            tr[u].exist = -1;
        }
    }
    return res;
}

Manacher

char ms[N];
int l, mana[N], c = -1, r = -1, ans = -10;

int main(){
	cin>>s;
	for(int i = 1; i <= s.size(); i ++){
		ms[i * 2 - 2] = '@';
		ms[i * 2 - 1] = s[i - 1];
	}
	ms[s.size() * 2] = '@';
	l = s.size()* 2;
	for(int i = 0; i <= l; i ++){
		if(i > r){
			int pr = i;
			while(ms[pr] == ms[i * 2 - pr] && i * 2 - pr >= 0){
				mana[i] ++;
				pr ++;
			}
		}
		else{
			int i1 = c * 2 - i;
			int l1 = c * 2 - r;
			if(i1 - mana[i1] + 1 > l1){
				mana[i] = mana[i1];
			}
			else{
				mana[i] = i1 - l1 + 1;
				int r1 = r + 1;
				while(ms[r1] == ms[i * 2 - r1] && i * 2 - r1 >= 0){
					mana[i] ++;
					r1 ++;
				}
			}
		}
		if(i + mana[i] - 1 > r) r = i + mana[i] - 1, c = i;
	}
	for(int i = 0; i <= l; i ++){
		ans = max(ans, mana[i] - 1);
	}

标签:return,int,void,tr,dfs,++,集合,模板
From: https://www.cnblogs.com/Nihachu-33/p/18183960

相关文章

  • ACM算法竞赛代码模板(长期更新)
    C++算法模板基础算法排序快速排序voidquickSort(intq[],intl,intr){if(l>=r)return;inti=l-1,j=r+1,x=q[l+r>>1];while(i<j){doi++;while(q[i]<x);doj--;while(q[j]>x);......
  • vue学习--模板语法(五、选项卡案例)
    案例:<!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8"><metaname="viewport"content="width=device-width,initial-scale=1.0"><scriptsrc="https://cdn.j......
  • vue学习--模板语法(四、属性样式绑定&流程语句)
    目录3.5属性绑定1.Vue如何动态处理属性?2.v-model的底层实现原理分析3.6样式处理1.class样式处理2.style样式处理3.7分支循环结构1.分支结构2.v-if与v-show区别3.循环结构3.5属性绑定1.Vue如何动态处理属性?v-bind指令用法<av-bind:href='url'>跳转</a>缩写形式<a......
  • python 集合类型 set
    set定义集合(Set)是一种无序且不重复的数据结构,用于存储一组唯一的元素。时间复杂度O(1)。集合是由一对花括号{}构成,其中每个元素之间用逗号分隔。集合中的元素必须是不可变的(不可修改),可以包含数字、字符串、元组等不可变类型。集合中的元素不重复,即集合中每个元素是唯一的。......
  • 一篇文章掌握Python中多种表达式的使用:算术表达式、字符串表达式、列表推导式、字典推
    Python中的表达式可以包含各种元素,如变量、常量、运算符、函数调用等。以下是Python表达式的一些分类及其详细例子:1.算术表达式算术表达式涉及基本的数学运算,如加、减、乘、除等。#加法表达式sum=3+5#结果为8#乘法表达式product=4*6#结果为24#复......
  • linux网络-实验集合
    双网卡设置点击查看代码步骤1.虚拟机中增加网络适配器。步骤2.使用ifconfig-a显示所有网卡,查看第二块网卡名称为ens36。步骤3.编辑配置文件。(复制ens33的配置文件并改名为ens36,修改文件。) [root@localhost~]#cd/etc/sysconfig/network-scripts///切换......
  • Tarjan模板
    Tarjan模板#include<iostream>#include<vector>#include<algorithm>#include<math.h>#include<sstream>#include<string>#include<string.h>#include<iomanip>#include<stdlib.h>#include<map>#include......
  • 项目冲刺集合贴--数字工匠队
    这个作业属于哪个课程软件工程这个作业的要求是什么项目冲刺这个作业的目标冲刺日志集合第一篇冲刺博客敏捷冲刺day1......
  • Python中级之数据类型的内置方法3(元祖、布尔、集合)
    【一】元祖类型(tuple)【1】定义元祖类型是有序且不可变的数据类型,通常使用小括号定义(也可以使用逗号)#用逗号定义num_tuple=1,2,3,4,5#用小括号定义num_tuple=(1,2,3,4,5)【2】内置方法(1)类型强转#使用tuple()函数将其他数据类型转换为元组类型num_list=......
  • string:Python的文本常量与字符串模板
    前言在程序中,有很多高效率的字符串处理方式,如果开发者能够完全掌握这些高效的字符串处理,往往在开发者也能事半功倍。比如针对于字符串的处理,也是自然语言处理的基础知识。而python3中,处理字符串的库为:string。本篇将详细介绍各种字符串的高效处理方式。首字母大写对于英文单词......