在缺少标注数据场景,SetFit 是解决的建模问题的一个有前途的解决方案,其由 Hugging Face 与 Intel 实验室 以及 UKP Lab 合作共同开发。作为一个高效的框架,SetFit 可用于对 Sentence Transformers 模型进行少样本微调。
SetFit 仅需很少的标注数据就能达到较高的准确率,例如,在使用 3-示例提示时,SetFit 优于 GPT-3.5;在使用 5-示例提示时,其在 Banking 77 金融意图数据集上的表现也优于使用 3-示例提示的 GPT-4。
与基于 LLM 的方法相比,SetFit 有两个独特的优势:
标签:body,至强,SetFit,Intel,模型,setfit,model,optimum From: https://www.cnblogs.com/huggingface/p/18176011