CNN应用demo
CNN实现简单的手写数字识别
import torch
import torch.nn.functional as F
from torchvision import datasets,transforms
from tqdm import tqdm
torch.zeros(8)
def relu(x):
return torch.clamp(x,min=0)
def linear(x,weight,bias):
out = torch.matmul(x,weight) + bias.view(1,-1)
return out
def model(x,params):
x = F.conv2d(x,params[0],params[1],2,0)
x = relu(x)
x = F.conv2d(x,params[2],params[3],2,0)
x = relu(x)
x = x.view(-1,200)
x = linear(x,params[4],params[5])
return x
init_std = 0.1
params = [
torch.randn(4,1,5,5) * init_std,
torch.zeros(4),
torch.randn(8,4,3,3) * init_std,
torch.zeros(8),
torch.randn(200,10) * init_std,
torch.zeros(10)
]
for p in params:
p.requires_grad = True
TRAIN_BATCH_SIZE = 100
TEST_BATCH_SIZE = 100
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'/data',train=True,download=True,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3080,))
])
),
batch_size = TRAIN_BATCH_SIZE,shuffle=True
)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'/data',train=False,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3080,))
])
),
batch_size = TEST_BATCH_SIZE,shuffle=False
)
LR = 0.1
EPOCH = 100
LOG_INTERVAL = 100
for epoch in range(EPOCH):
for idx,(data,label) in enumerate(train_loader):
output = model(data,params)
loss = F.cross_entropy(output,label)
for p in params:
if p.grad is not None:
p.grad.zero_()
loss.backward()
for p in params:
p.data = p.data - LR*p.grad.data
if idx % LOG_INTERVAL == 0:
print('Epoch %03d [%03d/%03d]\tLoss:%.4f' % (epoch,idx,len(train_loader),loss.item()))
correct_num = 0
total_num = 0
with torch.no_grad():
for data,label in test_loader:
output = model(data,params)
pred = output.max(1)[1]
correct_num += (pred==label).sum().item()
total_num += len(data)
acc = correct_num/total_num
print('...Testing @ Epoch %03d\tAcc: %.4f' % (epoch,acc))
Epoch 000 [000/600] Loss:2.3304
...Testing @ Epoch 000 Acc: 0.1093
...Testing @ Epoch 000 Acc: 0.1265
...Testing @ Epoch 000 Acc: 0.1392
...Testing @ Epoch 000 Acc: 0.1547
...Testing @ Epoch 000 Acc: 0.1753
...Testing @ Epoch 000 Acc: 0.1978
...Testing @ Epoch 000 Acc: 0.2243
...Testing @ Epoch 000 Acc: 0.2482
...Testing @ Epoch 000 Acc: 0.2802
...Testing @ Epoch 000 Acc: 0.3076
...Testing @ Epoch 000 Acc: 0.3206
...Testing @ Epoch 000 Acc: 0.3458
...Testing @ Epoch 000 Acc: 0.3649
...Testing @ Epoch 000 Acc: 0.4057
...Testing @ Epoch 000 Acc: 0.4618
...Testing @ Epoch 000 Acc: 0.4657
...Testing @ Epoch 000 Acc: 0.4729
...Testing @ Epoch 000 Acc: 0.5428
...Testing @ Epoch 000 Acc: 0.5659
...Testing @ Epoch 000 Acc: 0.5371
...Testing @ Epoch 000 Acc: 0.5344
...Testing @ Epoch 000 Acc: 0.5585
...Testing @ Epoch 000 Acc: 0.4423
...Testing @ Epoch 000 Acc: 0.6185
...
...Testing @ Epoch 000 Acc: 0.8701
...Testing @ Epoch 000 Acc: 0.8501
...Testing @ Epoch 000 Acc: 0.8750
...Testing @ Epoch 000 Acc: 0.8729
可以用GPU训练优化后的代码
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from tqdm import tqdm
class CNN(nn.Module):
def __init__(self,in_channels=1,num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=1,out_channels=8,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.pool = nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
self.conv2 = nn.Conv2d(in_channels=8,out_channels=16,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.fc1 = nn.Linear(16*7*7,num_classes)
def forward(self,x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0],-1)
x = self.fc1(x)
return x
# Set device
device = torch.device("cuda"if torch.cuda.is_available() else "cpu")
print(device)
# Hyperparameters
in_channels = 1
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 5
# Load Data
train_dataset = datasets.MNIST(root="dataset/",train=True,transform=transforms.ToTensor(),download=True)
train_loader = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_dataset = datasets.MNIST(root="dataset/",train=False,transform=transforms.ToTensor(),download=True)
test_loader = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
# Initialize network
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(),lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
# for data,targets in tqdm(train_loadr,leave=False) # 进度显示在一行
for data,targets in tqdm(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores,targets)
# backward
optimizer.zero_grad()
loss.backward()
# gardient descent or adam step
optimizer.step()
标签:Acc,...,torch,demo,Testing,动手,Epoch,000,CNN
From: https://www.cnblogs.com/Sun-Wind/p/18174450