题目描述
IOI 国历史研究的第一人——JOI 教授,最近获得了一份被认为是古代 IOI 国的住民写下的日记。JOI 教授为了通过这份日记来研究古代 IOI 国的生活,开始着手调查日记中记载的事件。
日记中记录了连续 \(N\) 天发生的事件,大约每天发生一件。
事件有种类之分。第 \(i\) 天发生的事件的种类用一个整数 \(X_i\)
表示,\(X_i\) 越大,事件的规模就越大。
JOI 教授决定用如下的方法分析这些日记:
-
选择日记中连续的几天 \([L,R]\) 作为分析的时间段;
-
定义事件 \(A\) 的重要度 \(W_A\) 为 \(A\times T_A\),其中 \(T_A\) 为该事件在区间 \([L,R]\) 中出现的次数。
现在,您需要帮助教授求出所有事件中重要度最大的事件是哪个,并输出其重要度。
注意:教授有多组询问。
输入格式
第一行两个空格分隔的整数 \(N\) 和 \(Q\),表示日记一共记录了 \(N\) 天,询问有 \(Q\) 次。
接下来一行 \(N\) 个空格分隔的整数表示每天的事件种类。
接下来 \(Q\) 行,每行给出 \(L,R\) 表示一组询问。
输出格式
输出共有 \(Q\) 行,每行一个整数,表示对应的询问的答案。
数据范围
对于 \(100\%\) 的数据,\(1\le Q,N\le 10^5\),\(1\le X\le 10^9\),\(1\le L\le R\le 10^5\)。
样例输入 #1
5 5
9 8 7 8 9
1 2
3 4
4 4
1 4
2 4
样例输出 #1
9
8
8
16
16
样例输入 #2
8 4
9 9 19 9 9 15 9 19
1 4
4 6
3 5
5 8
样例输出 #2
27
18
19
19
样例输入 #3
12 15
15 9 3 15 9 3 3 8 16 9 3 17
2 7
2 5
2 2
1 12
4 12
3 6
11 12
1 7
2 6
3 5
3 10
7 10
1 4
4 8
4 8
样例输出 #3
18
18
9
30
18
15
17
30
18
15
18
16
30
15
15
题解
本体的实质是找一段区间内一个数出现的次数,可以考虑用分块来做;
定义 \(sum[i][j]\) 表示前i个块中j这个数出现的位置,时间复杂度 $ O(n \sqrt n) $;
定义 $ f[i][j] $ 表示第 $ [i, j] $ 个块中的重要度最大值,时间复杂度 $ O(n \sqrt n) $;
这样,当我们查询时,如果 $ l $ 和 $ r $ 在同一个块,直接用桶数组暴力求解;
若不在同一个块,那么我们可以用 $ O(1) $ 的时间求出中间整块的重要度最大值,剩下的零散块暴力求解,最后使用sum数组找出 $ l $ 到 $ r $ 的每个数出现个数并和中间整块的重要度最大值作比较,不断更新,最后找出答案;
做此题的关键在于如何用 $ O(1) $ 的时间求出中间整块的重要度最大值,这里采用的方法是预处理(一般的时间复杂度为 $ O(n \sqrt n) $);
题目中的数据范围有时候也会给正解提供思路;
代码
#include <iostream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
long long a[1000005];
int cnt;
int b[1000005];
long long c[1000005];
int n, q;
int st[1000005], ed[1000005];
int belog[1000005];
int sq;
int sum[325][100005];
long long f[325][325];
long long t[1000005];
map<long long, int> mp;
long long ask(int l, int r) {
long long ans = 0;
if (belog[l] == belog[r]) { //直接暴力;
for (int i = l; i <= r; i++) {
t[b[i]]++;
}
for (int i = l; i <= r; i++) {
long long o = t[b[i]] * c[b[i]];
ans = max(ans, o);
}
for (int i = l; i <= r; i++) {
t[b[i]] = 0; //使用桶数组注意最后清零;
}
} else {
ans = f[belog[l] + 1][belog[r] - 1]; //中间整块的最大值;
for (int i = l; i <= ed[belog[l]]; i++) {
t[b[i]] = sum[belog[r] - 1][b[i]] - sum[belog[l]][b[i]]; //统计中间整块中b[i]出现的个数;
}
for (int i = st[belog[r]]; i <= r; i++) {
t[b[i]] = sum[belog[r] - 1][b[i]] - sum[belog[l]][b[i]];
}
for (int i = l; i <= ed[belog[l]]; i++) {
t[b[i]]++; //统计零散块中b[i]出现的个数;
}
for (int i = st[belog[r]]; i <= r; i++) {
t[b[i]]++;
}
for (int i = l; i <= ed[belog[l]]; i++) {
long long o = t[b[i]] * c[b[i]];
ans = max(ans, o); //更新答案;
}
for (int i = st[belog[r]]; i <= r; i++) {
long long o = t[b[i]] * c[b[i]];
ans = max(ans, o);
}
for (int i = l; i <= ed[belog[l]]; i++) {
t[b[i]] = 0; //使用桶数组注意最后清零;
}
for (int i = st[belog[r]]; i <= r; i++) {
t[b[i]] = 0; //使用桶数组注意最后清零;
}
}
return ans;
}
int main() {
cin >> n >> q;
for (int i = 1; i <= n; i++) { //需要离散化;
cin >> a[i];
if (mp[a[i]] == 0) {
mp[a[i]] = ++cnt; //mp[a[i]]是a[i]离散化后对应的值;
}
b[i] = mp[a[i]]; //b数组是a数组离散化后对应的数组;
c[b[i]] = a[i]; //c[i] == j代表i这个离散化后的值对应的真实值为j;
}
sq = sqrt(n);
for (int i = 1; i <= sq; i++) {
st[i] = sq * (i - 1) + 1;
ed[i] = sq * i;
}
ed[sq] = n;
for (int i = 1; i <= sq; i++) {
for (int j = st[i]; j <= ed[i]; j++) {
belog[j] = i;
}
}
for (int i = 1; i <= sq; i++) {
for (int j = 1; j <= ed[i]; j++) {
sum[i][b[j]]++;
}
}
for (int i = 1; i <= sq; i++) {
for (int j = 1; j <= sq; j++) {
long long ma = f[i][j - 1];
for (int k = st[j]; k <= ed[j]; k++) {
t[b[k]] = sum[j][b[k]] - sum[i - 1][b[k]];
}
for (int k = st[j]; k <= ed[j]; k++) {
if (ma < t[b[k]] * c[b[k]]) ma = t[b[k]] * c[b[k]];
}
f[i][j] = ma;
for (int k = st[j]; k <= ed[j]; k++) {
t[b[k]] = 0; //使用桶数组注意最后清零;
}
}
}
int l, r;
for (int i = 1; i <= q; i++) {
cin >> l >> r;
cout << ask(l, r) << endl;
}
return 0;
}
标签:joisc2014,le,15,分块,int,Luogu,1000005,样例,long
From: https://www.cnblogs.com/PeppaEvenPig/p/18171470