首页 > 其他分享 >STL练习

STL练习

时间:2024-04-24 17:00:40浏览次数:32  
标签:arr 元素 迭代 STL 练习 begin int vector

C++ 标准模板库 (STL, Standard Template Library):包含一些常用数据结构与算法的模板的 C++ 软件库。其包含四个组件——算法 (Algorithms)、容器 (Containers)、仿函数 (Functors)、迭代器 (Iterators).

示例:

  • 算法:sort(a.begin(), a.end())
  • 容器:priority_queue<int> pque
  • 仿函数:greater<int>()
  • 迭代器:vector<int>::iterator it = a.begin()

题单

vector P3156 【深基15.例1】询问学号

set P5250 【深基17.例5】木材仓库

map P5266 【深基17.例6】学籍管理

stack P1241 括号序列

queue P1996 约瑟夫问题

priority_queue Gym Class

string P5734 【深基6.例6】文字处理软件

pair

lower_bound upper_bound P1102 A-B 数对

unique P1059 明明的随机数

1 前言

STL 作为一个封装良好,性能合格的 C++ 标准库,在算法竞赛中运用极其常见。灵活且正确使用 STL 可以节省非常多解题时间,这一点不仅是由于可以直接调用,还是因为它封装良好,可以让代码的可读性变高,解题思路更清晰,调试过程 往往 更顺利。

不过 STL 毕竟使用了很多复杂的结构来实现丰富的功能,它的效率往往是比不上自己手搓针对特定题目的数据结构与算法的。因此,STL 的使用相当于使用更长的运行时间换取更高的编程效率。因此,在实际比赛中要权衡 STL 的利弊,不过这一点就得靠经验了。

接下来,我会分享在算法竞赛中常用的 STL 容器和算法,对于函数和迭代器,就不着重展开讲了。

2 常用容器

2.1 内容总览

打勾的是本次将会详细讲解的,加粗的是算法竞赛中有必要学习的。

  • 顺序容器

  • 关联容器

  • 无序关联容器

  • 容器适配器

  • 字符串

  • 对与元组

2.2 向量 vector

#include <vector>

连续的顺序的储存结构(和数组一样的类别),但是有长度可变的特性。

2.2.1 常用方法

构造

vector<类型> arr(长度, [初值])

时间复杂度:\(O(n)\)

常用的一维和二维数组构造示例,高维也是一样的(就是会有点长).

vector<int> arr;         // 构造int数组
vector<int> arr(100);    // 构造初始长100的int数组
vector<int> arr(100, 1); // 构造初始长100的int数组,初值为1

vector<vector<int>> mat(100, vector<int> ());       // 构造初始100行,不指定列数的二维数组
vector<vector<int>> mat(100, vector<int> (666, -1)) // 构造初始100行,初始666列的二维数组,初值为-1

构造二维数组的奇葩写法,千万别用:

vector<int> arr[100];         // 正确,构造初始100行,不指定列数的二维数组,可用于链式前向星存图
vector<int> arr[100](100, 1); // 语法错误!
vector<int> arr(100, 1)[100]; // 语法错误!
vector<int> arr[100] {{100, 1}, 这里省略98个 ,{100, 1}}; // 正确但奇葩,使用列表初始化

尾接 & 尾删

  • .push_back(元素):在 vector 尾接一个元素,数组长度 \(+1\).
  • .pop_back():删除 vector 尾部的一个元素,数组长度 \(-1\)

时间复杂度:均摊 \(O(1)\)

// init: arr = []
arr.push_back(1);
// after: arr = [1]
arr.push_back(2);
// after: arr = [1, 2]
arr.pop_back();
// after: arr = [1]
arr.pop_back();
// after: arr = []

中括号运算符

和一般数组一样的作用

时间复杂度:\(O(1)\)

获取长度

.size()

获取当前 vector 的长度

时间复杂度:\(O(1)\)

for (int i = 0; i < arr.size(); i++)
    cout << a[i] << endl;

清空

.clear()

清空 vector

时间复杂度:\(O(n)\)

判空

.empty()

如果是空返回 true 反之返回 false.

时间复杂度:\(O(1)\)

改变长度

.resize(新长度, [默认值])

修改 vector 的长度

  • 如果是缩短,则删除多余的值
  • 如果是扩大,且指定了默认值,则新元素均为默认值(旧元素不变)

时间复杂度:\(O(n)\)

2.2.2 适用情形

一般情况 vector 可以替换掉普通数组,除非该题卡常。

有些情况普通数组没法解决:\(n\times m\) 的矩阵,\(1\leq n,m\leq 10^6\) 且 \(n\times m \leq 10^6\)

  • 如果用普通数组 int mat[1000010][1000010],浪费内存,会导致 MLE。
  • 如果使用 vector<vector<int>> mat(n + 10, vector<int> (m + 10)),完美解决该问题。

另外,vector 的数据储存在堆空间中,不会爆栈。

2.2.3 注意事项

提前指定长度

如果长度已经确定,那么应当直接在构造函数指定长度,而不是一个一个 .push_back(). 因为 vector 额外内存耗尽后的重分配是有时间开销的,直接指定长度就不会出现重分配了。

// 优化前: 522ms
vector<int> a;
for (int i = 0; i < 1e8; i++)
    a.push_back(i);
// 优化后: 259ms
vector<int> a(1e8);
for (int i = 0; i < a.size(); i++)
    a[i] = i;

当心 size_t 溢出

vector 获取长度的方法 .size() 返回值类型为 size_t,通常 OJ 平台使用的是 32 位编译器(有些平台例如 cf 可选 64 位),那么该类型范围为 \([0,2^{32})\).

vector<int> a(65536);
long long a = a.size() * a.size(); // 直接溢出变成0了

2.3 栈 stack

#include <stack>

通过二次封装双端队列 (deque) 容器,实现先进后出的栈数据结构。

2.3.1 常用方法

作用 用法 示例
构造 stack<类型> stk stack<int> stk;
进栈 .push(元素) stk.push(1);
出栈 .pop() stk.pop();
取栈顶 .top() int a = stk.top();
查看大小 / 清空 / 判空

2.3.2 适用情形

如果不卡常的话,就可以直接用它而不需要手写栈了。

另外,vector 也可以当栈用,vector 的 .back() 取尾部元素,就相当于取栈顶,.push_back() 相当于进栈,.pop_back() 相当于出栈。

2.3.3 注意事项

不可访问内部元素!下面都是错误用法

for (int i = 0; i < stk.size(); i++)
    cout << stk[i] << endl;
for (auto ele : stk)
    cout << stk << endl;

2.4 队列 queue

#include <queue>

通过二次封装双端队列 (deque) 容器,实现先进先出的队列数据结构。

2.4.1 常用方法

作用 用法 示例
构造 queue<类型> que queue<int> que;
进队 .push(元素) que.push(1);
出队 .pop() que.pop();
取队首 .front() int a = que.front();
取队尾 .back() int a = que.back();
查看大小 / 清空 / 判空

2.4.2 适用情形

如果不卡常的话,就可以直接用它而不需要手写队列了。

2.4.3 注意事项

不可访问内部元素!下面都是错误用法

for (int i = 0; i < que.size(); i++)
    cout << que[i] << endl;
for (auto ele : que)
    cout << ele << endl;

2.5 优先队列 priority_queue

#include <queue>

提供常数时间的最大元素查找,对数时间的插入与提取,底层原理是二叉堆。

2.5.1 常用方法

构造

priority_queue<类型, 容器, 比较器> pque

  • 类型:要储存的数据类型
  • 容器:储存数据的底层容器,默认为 vector<类型>,竞赛中保持默认即可
  • 比较器:比较大小使用的比较器,默认为 less<类型>,可自定义
priority_queue<int> pque1;                            // 储存int的大顶堆
priority_queue<int, vector<int>, greater<int>> pque2; // 储存int的小顶堆

对于需要自定义比较器的情况,涉及一些初学时容易看迷糊的语法(重载小括号运算符 / lambda 表达式),在此就不展开讲了。如果想要了解,可以查阅 cppreference 中的代码示例。

其他

作用 用法 示例
进堆 .push(元素) que.push(1);
出堆 .pop() que.pop();
取堆顶 .top() int a = que.top();
查看大小 / 判空

进出队复杂度 \(O(\log n)\),取堆顶 \(O(1)\).

2.5.2 适用情形

持续维护元素的有序性:每次向队列插入大小不定的元素,或者每次从队列里取出大小最小/最大的元素,元素数量 \(n\),插入操作数量 \(k\).

  • 每次插入后进行快速排序:\(k\cdot n\log n\)
  • 使用优先队列维护:\(k\cdot\log n\)

2.5.3 注意事项

仅堆顶可读

只可访问堆顶,其他元素都无法读取到。下面是错误用法:

cout << pque[1] << endl;

所有元素不可写

堆中所有元素是不可修改的。下面是错误用法:

pque[1] = 2;
pque.top() = 1;

如果你恰好要修改的是堆顶元素,那么是可以完成的:

int tp = pque.top();
pque.pop();
pque.push(tp + 1);

2.6 集合 set

#include <set>

提供对数时间的插入、删除、查找的集合数据结构。底层原理是红黑树。

集合三要素 解释 set multiset unordered_set
确定性 一个元素要么在集合中,要么不在
互异性 一个元素仅可以在集合中出现一次 ❌(任意次)
无序性 集合中的元素是没有顺序的 ❌(从小到大) ❌(从小到大)

2.6.1 常用方法

构造

set<类型, 比较器> st

  • 类型:要储存的数据类型
  • 比较器:比较大小使用的比较器,默认为 less<类型>,可自定义
set<int> st1;               // 储存int的集合(从小到大)
set<int, greater<int>> st2; // 储存int的集合(从大到小)

对于需要自定义比较器的情况,涉及一些初学时容易看迷糊的语法(重载小括号运算符 / lambda 表达式),在此就不展开讲了。

遍历

可使用迭代器进行遍历:

for (set<int>::iterator it = st.begin(); it != st.end(); ++it)
    cout << *it << endl;

基于范围的循环(C++ 11):

for (auto &ele : st)
    cout << ele << endl;

其他

作用 用法 示例
插入元素 .insert(元素) st.insert(1);
删除元素 .erase(元素) st.erase(2);
查找元素 .find(元素) auto it = st.find(1);
判断元素是否存在 .count(元素) st.count(3);
查看大小 / 清空 / 判空

增删查时间复杂度均为 \(O(\log n)\)

2.6.2 适用情形

  • 元素去重:\([1,1,3,2,4,4]\to[1,2,3,4]\)
  • 维护顺序:\([1,5,3,7,9]\to[1,3,5,7,9]\)
  • 元素是否出现过:元素大小 \([-10^{18},10^{18}]\),元素数量 \(10^6\),vis 数组无法实现,通过 set 可以完成。

2.6.3 注意事项

不存在下标索引

set 虽说可遍历,但仅可使用迭代器进行遍历,它不存在下标这一概念,无法通过下标访问到数据。下面是错误用法:

cout << st[0] << endl;

元素只读

set 的迭代器取到的元素是只读的(因为是 const 迭代器),不可修改其值。如果要改,需要先 erase 再 insert. 下面是错误用法:

cout << *st.begin() << endl; // 正确。可读。
*st.begin() = 1;             // 错误!不可写!

不可用迭代器计算下标

set 的迭代器不能像 vector 一样相减得到下标。下面是错误用法:

auto it = st.find(2);      // 正确,返回2所在位置的迭代器。
int idx = it - st.begin(); // 错误!不可相减得到下标。

2.7 映射 map

#include <map>

提供对数时间的有序键值对结构。底层原理是红黑树。

映射:

\[\begin{matrix} 1&\to&2\\ 2&\to&2\\ 3&\to&1\\ 4&\to&5\\ &\vdots \end{matrix} \]

性质 解释 map multimap unordered_map
互异性 一个键仅可以在映射中出现一次 ❌(任意次)
无序性 键是没有顺序的 ❌(从小到大) ❌(从小到大)

2.7.1 常用方法

构造

map<键类型, 值类型, 比较器> mp

  • 键类型:要储存键的数据类型
  • 值类型:要储存值的数据类型
  • 比较器:键比较大小使用的比较器,默认为 less<类型>,可自定义
map<int, int> mp1;               // int->int 的映射(键从小到大)
map<int, int, greater<int>> st2; // int->int 的映射(键从大到小)

对于需要自定义比较器的情况,涉及一些初学时容易看迷糊的语法(重载小括号运算符 / lambda 表达式),在此就不展开讲了。

遍历

可使用迭代器进行遍历:

for (map<int, int>::iterator it = mp.begin(); it != mp.end(); ++it)
    cout << it->first << ' ' << it->second << endl;

基于范围的循环(C++ 11):

for (auto &pr : mp)
    cout << pr.first << ' ' << pr.second << endl;

结构化绑定 + 基于范围的循环(C++17):

for (auto &[key, val] : mp)
    cout << key << ' ' << val << endl;

其他

作用 用法 示例
增 / 改 / 查元素 中括号 mp[1] = 2;
查元素(返回迭代器) .find(元素) auto it = mp.find(1);
删除元素 .erase(元素) mp.erase(2);
判断元素是否存在 .count(元素) mp.count(3);
查看大小 / 清空 / 判空

增删改查时间复杂度均为 \(O(\log n)\)

2.7.2 适用情形

需要维护映射的场景可以使用:输入若干字符串,统计每种字符串的出现次数。(map<string, int> mp)

2.7.3 注意事项

中括号访问时默认值

如果使用中括号访问 map 时对应的键不存在,那么会新增这个键,并且值为默认值,因此中括号会影响键的存在性。

map<char, int> mp;
cout << mp.count('a') << endl; // 0
mp['a'];                       // 即使什么都没做,此时mp['a']=0已经插入了
cout << mp.count('a') << endl; // 1
cout << mp['a'] << endl;       // 0

不可用迭代器计算下标

map 的迭代器不能像 vector 一样相减得到下标。下面是错误用法:

auto it = mp.find('a');      // 正确,返回2所在位置的迭代器。
int idx = it - mp.begin();   // 错误!不可相减得到下标。

2.8 字符串 string

#include <string>

顾名思义,就是储存字符串的。

2.8.1 常用方法

构造

构造函数:string(长度, 初值)

string s1;           // 构造字符串,为空
string s2 = "awa!";  // 构造字符串,并赋值awa!
string s3(10, '6');  // 构造字符串,通过构造函数构造为6666666666

输入输出

C++

string s;
cin >> s;
cout << s;

C

string s;
char buf[100];
scanf("%s", &buf);
s = buf;
printf("%s", s.c_str());

其他

作用 用法 示例
修改、查询指定下标字符 [] s[1] = 'a';
是否相同 == if (s1 == s2) ...
字符串连接 + string s = s1 + s2;
尾接字符串 += s += "awa";
取子串 .substr(起始下标, 子串长度) string sub = s.substr(2, 10);
查找字符串 .find(字符串, 起始下标) int pos = s.find("awa");

数值与字符串互转(C++11)

目的 函数
int / long long / float / double / long double string to_string()
string int stoi()
string long long stoll()
string float stof()
string double stod()
string long double stold()

2.8.2 适用情形

非常好用!建议直接把字符数组扔了,赶快投入 string 的怀抱。

2.8.3 注意事项

尾接字符串一定要用 +=

string 的 += 运算符,将会在原字符串原地尾接字符串。而 + 了再 = 赋值,会先生成一个临时变量,在复制给 string.

通常字符串长度可以很长,如果使用 + 字符串很容易就 TLE 了。

// 优化前: 15139ms
string s;
for (int i = 0; i < 5e5; i++)
    s = s + "a";

// 优化后: < 1ms (计时器显示0)
string s;
for (int i = 0; i < 5e5; i++)
    s += "a";

.substr() 方法的奇葩参数

一定要注意,C++ string 的取子串的第一个参数是子串起点下标,第二个参数是子串长度

第二个参数不是子串终点!不是子串终点!要与 java 等其他语言区分开来。

.find() 方法的复杂度

该方法实现为暴力实现,时间复杂度为 \(O(n^2)\).

不要幻想 STL 内置了个 \(O(n)\) 的 KMP 算法

2.9 二元组 pair

#include <utility>

顾名思义,就是储存二元组的。

2.9.1 常用方法

构造

pair<第一个值类型, 第二个值类型> pr

  • 第一个值类型:要储存的第一个值的数据类型
  • 第二个值类型:要储存的第二个值的数据类型
pair<int, int> p1;
pair<int, long long> p2;
pair<char, int> p3;
// ...

赋值

老式

pair<int, char> pr = make_pair(1, 'a');

列表构造 C++11

pair<int, char> pr = {1, 'a'};

取值

直接取值

  • 取第一个值:.first
  • 取第二个值:.second
pair<int, char> pr = {1, 'a'};
int awa = pr.first;
char bwb = pr.second;

结构化绑定 C++17

pair<int, char> pr = {1, 'a'};
auto &[awa, bwb] = pr;

判同

直接用 == 运算符

pair<int, int> p1 = {1, 2};
pair<int, int> p2 = {1, 3};
if (p1 == p2) { ... } // false

2.9.2 适用场景

所有需要二元组的场景均可使用,效率和自己定义结构体差不多。

2.9.3 注意事项

3 迭代器简介

3.1 迭代器是什么?

不搞抽象,直接举例。

对于一个 vector,我们可以用下标遍历:

for (int i = 0; i < a.size(); i++)
    cout << a[i] << endl;

我们同时也可以用迭代器来遍历:

for (vector<int>::iterator it = a.begin(); it != a.end(); ++it)
    cout << *it << endl;
  • a.begin() 是一个迭代器,指向的是第一个元素
  • a.end() 是一个迭代器,指向的是最后一个元素再后面一位
  • 上述迭代器具有自增运算符,自增则迭代器向下一个元素移动
  • 迭代器与指针相似,如果对它使用解引用运算符,即 *it,就能取到对应值了

3.2 为何需要迭代器?

很多数据结构并不是线性的(例如红黑树),对于非线性数据结构,下标是无意义的。无法使用下标来遍历整个数据结构。

迭代器的作用就是定义某个数据结构的遍历方式,通过迭代器的增减,代表遍历到的位置,通过迭代器便能成功遍历非线性结构了。

例如,set 的实现是红黑树,我们是没法用下标来访问元素的。但是通过迭代器,我们就能遍历 set 中的元素了:

for (set<int>::iterator it = st.begin(); it != st.end(); ++it)
    cout << *it << endl;

3.3 迭代器用法

对于 vector 容器,它的迭代器功能比较完整,以它举例:

  • .begin():头迭代器
  • .end():尾迭代器
  • .rbegin():反向头迭代器
  • .rend():反向尾迭代器
  • 迭代器 + 整型:将迭代器向后移动
  • 迭代器 - 整型:将迭代器向前移动
  • 迭代器 ++:将迭代器向后移动 1 位
  • 迭代器 --:将迭代器向前移动 1 位
  • 迭代器 - 迭代器:两个迭代器的距离
  • prev(it):返回 it 的前一个迭代器
  • next(it):返回 it 的后一个迭代器

对于其他容器,由于其结构特性,上面的功能不一定都有(例如 set 的迭代器是不能相减求距离的)

3.4 常见问题

.end().rend() 指向的位置是无意义的值

对于一个长度为 10 的数组:for (int i = 0; i < 10; i++),第 10 位是不可访问的

对于一个长度为 10 的容器:for (auto it = a.begin(); it != a.end(); ++it),.end 是不可访问的

不同容器的迭代器功能可能不一样

迭代器细化的话有正向、反向、双向,每个容器的迭代器支持的运算符也可能不同,因此不同容器的迭代器细节很有可能是不一样的。

删除操作时需要警惕

为什么 3 没删掉?

vector<int> a{1, 2, 3, 4};
for (auto it = a.begin(); it != a.end(); ++it)
    if (*it == 2 || *it == 3)
        a.erase(it);
// a = [1, 3, 4]

为啥 RE 了?

vector<int> a{1, 2, 3, 4};
for (auto it = a.begin(); it != a.end(); ++it)
    if (*it == 4)
        a.erase(it);
建议:如无必要,别用迭代器操作容器。(遍历与访问没关系)

4 常用算法

4.1 内容总览

打勾的是本次将会详细讲解的,其他的是算法竞赛中建议学习的,不在下表列出的在比赛中基本用不到。

(很多函数的功能很简单,自己都能快速写出来,但是使用函数可以让代码可读性变得更高,这在比赛中是至关紧要的)

4.2 swap()

交换两个变量的值

用法示例

template< class T >
void swap( T& a, T& b );
int a = 0, b = 1;
swap(a, b);
// now a = 1, b = 0

int arr[10] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
swap(arr[4], arr[6]);
// now arr = {0, 1, 2, 3, 6, 5, 4, 7, 8, 9}

注意事项

这个 swap 参数是引用的,不需要像 C 语言一样取地址。

4.3 sort()

使用快速排序给一个可迭代对象排序

用法示例

template< class RandomIt, class Compare >
void sort( RandomIt first, RandomIt last, Compare comp );

默认排序从小到大

vector<int> arr{1, 9, 1, 9, 8, 1, 0};
sort(arr.begin(), arr.end());
// arr = [0, 1, 1, 1, 8, 9, 9]

如果要从大到小,则需要传比较器进去。

vector<int> arr{1, 9, 1, 9, 8, 1, 0};
sort(arr.begin(), arr.end(), greater<int>());
// arr = [9, 9, 8, 1, 1, 1, 0]

如果需要完成特殊比较,则需要手写比较器。

比较器函数返回值是 bool 类型,传参是需要比较的两个元素。记我们定义的该比较操作为 \(\star\):

  • 若 \(a\star b\),则比较器函数应当返回 true
  • 若 \(a\not\star b\),则比较器函数应当返回 false

注意:如果 \(a=b\),比较器函数必须返回 false

bool cmp(pair<int, int> a, pair<int, int> b)
{
    if (a.second != b.second)
        return a.second < b.second;
    return a.first > b.first;
}

int main()
{
    vector<pair<int, int>> arr{{1, 9}, {2, 9}, {8, 1}, {0, 0}};
	sort(arr.begin(), arr.end(), cmp);
    // arr = [(0, 0), (8, 1), (2, 9), (1, 9)]
}

4.4 lower_bound() / upper_bound()

已升序排序的元素中,应用二分查找检索指定元素,返回对应元素迭代器位置。找不到则返回尾迭代器。

  • lower_bound(): 寻找 \(\geq x\) 的第一个元素的位置
  • upper_bound(): 寻找 \(>x\) 的第一个元素的位置

怎么找 \(\leq x\) / \(< x\) 的第一个元素呢?

  • \(>x\) 的第一个元素的前一个元素(如果有)便是 \(\leq x\) 的第一个元素
  • \(\geq x\) 的第一个元素的前一个元素(如果有)便是 \(<x\) 的第一个元素

返回的是迭代器,如何转成下标索引呢?减去头迭代器即可。

用法示例

template< class ForwardIt, class T >
ForwardIt lower_bound( ForwardIt first, ForwardIt last, const T& value );
vector<int> arr{0, 1, 1, 1, 8, 9, 9};
vector<int>::iterator it = lower_bound(arr.begin(), arr.end(), 7);
int idx = it - arr.begin();
// idx = 4

我们通常写成一行:

vector<int> arr{0, 1, 1, 1, 8, 9, 9};
idx = lower_bound(arr.begin(), arr.end(), 7) - arr.begin(); // 4
idx = lower_bound(arr.begin(), arr.end(), 8) - arr.begin(); // 4
idx = upper_bound(arr.begin(), arr.end(), 7) - arr.begin(); // 4
idx = upper_bound(arr.begin(), arr.end(), 8) - arr.begin(); // 5

4.5 reverse()

反转一个可迭代对象的元素顺序

用法示例

template< class BidirIt >
void reverse( BidirIt first, BidirIt last );
vector<int> arr(10);
iota(arr.begin(), arr.end(), 1);
// 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
reverse(arr.begin(), arr.end());
// 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

4.6 max() / min()

返回最大值 / 最小值的数值

用法示例

int mx = max(1, 2); // 2
int mn = min(1, 2); // 1

在 C++11 之后,可以使用列表构造语法传入一个列表,这样就能一次性给多个元素找最大值而不用套娃了:

// Before C++11
int mx = max(max(1, 2), max(3, 4)); // 4
int mn = min(min(1, 2), min(3, 4)); // 1

// After C++11
int mx = max({1, 2, 3, 4}); // 4
int mn = min({1, 2, 3, 4}); // 1

4.7 unique()

消除数组的重复相邻元素,数组长度不变,但是有效数据缩短,返回的是有效数据位置的结尾迭代器。

例如:\([1,1,4,5,1,4]\to[1,4,5,1,4,\underline?]\),下划线位置为返回的迭代器指向。

template< class ForwardIt >
ForwardIt unique( ForwardIt first, ForwardIt last );

用法示例

单独使用 unique 并不能达成去重效果,因为它只消除相邻的重复元素。但是如果序列有序,那么它就能去重了。

但是它去重后,序列尾部会产生一些无效数据:\([1,1,2,4,4,4,5]\to[1,2,4,5,\underline?,?,?]\),为了删掉这些无效数据,我们需要结合 erase.

最终,给 vector 去重的写法便是:

vector<int> arr{1, 2, 1, 4, 5, 4, 4};
sort(arr.begin(), arr.end());
arr.erase(unique(arr.begin(), arr.end()), arr.end());

4.8 数学函数

所有函数参数均支持 int / long long / float / double / long double

公式 示例
\(f(x)=\lvert x\rvert\) abs(-1.0)
\(f(x)=e^x\) exp(2)
\(f(x)=\ln x\) log(3)
\(f(x,y)=x^y\) pow(2, 3)
\(f(x)=\sqrt x\) sqrt(2)
\(f(x)=\lceil x\rceil\) ceil(2.1)
\(f(x)=\lfloor x\rfloor\) floor(2.1)
\(f(x)=\left<x\right>\) rount(2.1)

注意事项

由于浮点误差,有些的数学函数的行为可能与预期不符,导致 WA。如果你的操作数都是整型,那么用下面的写法会更稳妥。

原文地址:https://codeforces.com/blog/entry/107717

  • \(\lfloor\frac{a}{b}\rfloor\)
    • 别用:floor(1.0 * a / b)
    • 要用:a / b
  • \(\lceil\frac{a}{b}\rceil\)
    • 别用:ceil(1.0 * a / b)
    • 要用:(a + b - 1) / b (\(\lceil\frac{a}{b}\rceil=\lfloor\frac{a+b-1}{b}\rfloor\))
  • \(\lfloor\sqrt a\rfloor\)
  • \(a^b\)
  • \(\lfloor\log_2 a\rfloor\)
    • 别用:log2(a)
    • 要用:__lg (不规范,但是这是竞赛)/ bit_width(C++20 可用)

4.9 gcd() / lcm()

(C++17)返回最大公因数 / 最小公倍数

int x = gcd(8, 12); // 4
int y = lcm(8, 12); // 24

如果不是 C++17,但是是 GNU 编译器(g++),那么可以用内置函数 __gcd().

当然,gcd / lcm 函数也挺好写,直接写也行(欧几里得算法):

int gcd(int a, int b)
{
    if (!b)
        return a;
    return gcd(b, a % b);
}

int lcm(int a, int b)
{
    return a / gcd(a, b) * b;
}

标签:arr,元素,迭代,STL,练习,begin,int,vector
From: https://www.cnblogs.com/ckeri/p/18155860

相关文章

  • 2024.4.23 近期练习
    CF1924D先考虑一个串的最长合法序列,维护一个栈,答案就是右括号加入时栈非空的次数。我们看成从\((0,0)\)走到\((n,m)\),发现没被匹配的右括号个数就是\(x-y\)的最大值。要想只有\(k\)个匹配,那么要和\(x-y=m-k\)“相切”。若\(f(k)\)表示穿过直线的方案数,答案是\(f(k......
  • 分层图练习
    P4568[JLOI2011]飞行路线-洛谷|计算机科学教育新生态(luogu.com.cn)//////////////////////////////////////////////////////法一:分层图intn,m,k;ints,t;constintinf=0x3f3f3f3f;vector<pair<int,int>>vct[10004*12];//开多层,一定要开大点!!10004*11都是RE的p......
  • 数据结构的练习day2(未完待续)
    数据结构线性结构之单向循环链表的基本操作/***********************************************************************************************************设计单向循环链表的接口****Copyright(c)[email protected]......
  • 【图论】最短路练习——P1629邮递员送信
    邮递员送信题目描述有一个邮递员要送东西,邮局在节点\(1\)。他总共要送\(n-1\)样东西,其目的地分别是节点\(2\)到节点\(n\)。由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有\(m\)条道路。这个邮递员每次只能带一样东西,并且运送每件物品过后必须返回邮局。求送完......
  • 前端【uniapp】06-uniapp【练习项目 · 神领物流】【任务【交付】【回车登记】【已完
    uni-app(神领物流)项目实战学习目标:能够独立完成回交付、回车登记的功能能够自定义回车登记交互组件能够使用Pinia实现组件间数据共享能够打包发布H5、小程序和App项目应用能够配置App的图标及启动屏幕一、【神领物流】任务1、交付司机在将货物运达目......
  • 顺序表和链表的练习题
    顺序表题目一:题目分析:该题目需要先对顺序表进行遍历至元素x正确插入位置,再对顺序表完成插入操作。因此涉及到for循环与if语句的使用代码实现/********************************************************************** name : SequenceList_insert* function:实现插......
  • 数据结构的练习day1
    链表只能一个一个的遍历,不能通过随机访问来获取节点链表的地址是并要求连续的,是通过内部的指针来进行联系的/***************************************************************************************************************Copyright(c)2023-2024......
  • 34.c语言数组练习题(牛客网)
    先打个广告哈哈哈牛客网练编程题不错不错哦冒泡排序必须必须必须会#include<stdio.h>voidsort(intarr[],intn){//外层循环for(inti=0;i<n-1;++i){intflag=1;//假设flag=1就是已经排序好的//内层循环for(intj=0;......
  • rhce练习题容易错的地方
    rhce练习题里容易错的地方使用导航器的时候,ssh连接因为导航器是一个工具,生成一个容器,在容器里面运行playbook安装软件包的时候,多个软件包使用循环looploop的格式-hosts:NODE1tasks:-name:installphpansible.builtin.yum:name:"{{ite......
  • 前端【uniapp】03-uniapp【练习项目 · 神领物流】
    uni-app(神领物流)项目实战学习目标:能够对Pinia进行初始化操作掌握创建Store及数据操作的步骤能够对Pinia数据进行持久化的处理掌握uniForm表单验证的使用方法能够根据业务需求配置请求/响应拦截器一、【神领物流】项目启动本节的主要任务是获取项......