首页 > 其他分享 >Llama3-8B到底能不能打?实测对比

Llama3-8B到底能不能打?实测对比

时间:2024-04-23 13:33:57浏览次数:35  
标签:中文 8B 模型 Llama3 Instruct 实测 Llama 问答

前几天Meta开源发布了新的Llama大语言模型:Llama-3系列,本次一共发布了两个版本:Llama-3-8B和Llama-3-70B,根据Meta发布的测评报告,Llama-3-8B的性能吊打之前的Llama-2-70B,也就是说80亿参数的模型干掉了700亿参数的模型,这个还真挺让人震惊的。

Llama-3-8B真的有这么强吗?

鉴于8B的模型可以在24G显存下流畅运行,成本不高,我就在AutoDL上实际测试了一下。

测试方案

使用的是我之前在AutoDL上发布的一个大语言模型WebUI镜像:yinghuoai-text-generation-webui (这个WebUI可以对大语言模型进行推理和微调),显卡选择的是 4090D 24G显存版本,使用三个问题分别测试了 Llama-3-8B-Instruct(英文问答)、Llama-3-8B-Instruct(中文问答)、llama3-chinese-chat、Qwen1.5-7B-Chat。其中llama3-chinese-chat是网友基于Llama-3-8B-Instruct训练的中文对话模型,项目地址:https://github.com/CrazyBoyM/llama3-Chinese-chat

三个问题分别是:

  1. 小明的妻子生了一对双胞胎。以下哪个推论是正确的?
    1. A.小明家里一共有三个孩子
    2. B.小明家里一共有两个孩子。
    3. C.小明家里既有男孩子也有女孩子
    4. D.无法确定小明家里孩子的具体情况
  1. 有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
  2. 请使用C#帮我写一个猜数字的游戏。

这三个问题分别考察大语言模型的逻辑推理、数学计算和编码能力。当然这个考察方案不怎么严谨,但是也能发现一些问题。

因为Llama-3的中文训练语料很少,所有非英语的训练数据才占到5%,所以我这里对Llama-3-8B分别使用了中英文问答,避免因中文训练不足导致测试结果偏差。

测试结果

鸡兔同笼问题

Llama-3-8B-Instruct(中文问答)

首先模型没有搞清楚鸡和兔的脚的数量是不同的,其次模型解方程的能力也不怎么行,总是算不对。

另外还是不是飙几句英语,看来中文训练的确实不太行。

Llama-3-8B-Instruct(英文问答)

搞清楚了不同动物脚的数量问题,但是还是不会计算,有时候方程能列正确,但是测试多次还是不会解方程组。

llama3-chinese-chat

中文无障碍,数学公式也列对了,但是答案是错的,没有给出解答过程。实测结果稳定性也比较差,每次总会给出不一样的解答方式。

Qwen1.5-7B-Chat

中文无障碍,答案正确,解答过程也基本完整。

小明家孩子的情况

Llama-3-8B-Instruct(中文问答)

答案不正确,解释的也不全面,没有说明其它答案为什么不正确。

Llama-3-8B-Instruct(英文问答)

答案正确,但是分析的逻辑有缺陷,没有完全说明白,只谈到性别问题,数字逻辑好像有点绕不清。

llama3-chinese-chat

答案错误,逻辑是混乱的,前言不搭后语,没有逻辑性。

Qwen1.5-7B-Chat

答案是正确的,但是逻辑不太通顺,说着性别,就跳到数量上去了。

猜数字游戏编程

Llama-3-8B-Instruct(中文问答)

代码完整,没有明显问题,但是还是会冒英文。

Llama-3-8B-Instruct(英文问答)

代码完整,没有明显问题。

llama3-chinese-chat

代码正确,但是不够完整,还需要更多提示。

Qwen1.5-7B-Chat

代码完整,没有明显问题。

测试结论

根据上边的测试结果,有一些结论是比较明确的。

Llama-3-8B的中文能力确实不太行,最明显的是时不时会冒一些英文,更重要的是使用中文时输出的内容偏简单化,逻辑上不那么严谨。

网友训练的 llama3-chinese-chat 问题比较多,可能是训练数据不足,或者训练参数上不够优秀,回答问题过于简略,逻辑性不够,稳定性也不太行,经常输出各种不一样的答案。建议只是玩玩,可以学习下它的训练方法。

Llama-3-8B的逻辑分析和数学能力不太行?至少在回答上边的鸡兔同笼问题和小明家孩子的情况上表现不佳,这是什么原因呢?训练语料的问题?但是我使用Llama-3-70B时,它可以正确且圆满的回答这两个问题,这就是权重参数不够的问题了,8B参数的能力还是差点。

Llama-3-8B的英文能力总体感觉还可以,但实测也没有那么惊艳,总有一种缺少临门一脚的感觉,有点瑕疵。说它媲美或者超越百亿参数的模型,这个是存在一些疑虑的。

Qwen1.5-7B-Chat在这几个问题的表现上还不错,不过很可能是这几个问题都学的很熟练了,特别是鸡兔同笼问题,大语言模型刚刚火爆的时候在国内常常被拿来做比较使用。目前还没有完整的Llama-3和Qwen1.5的评测对比数据,Llama-3公开的基准测试很多使用了few-shot,也就是评估时先给出几个问答示例,然后再看模型在类似问题上的表现,关注的是学习能力。根据HuggingFace上公开的数据,仅可以对比模型在MMLU(英文综合能力)和HumanEval(编程)上的的表现,比较突出的是编程能力,如下面两张图所示:

企业或者个人要在业务中真正使用,感觉还得是百亿模型,准确性和稳定性都会更好,百亿之下目前还不太行,经常理解或者输出不到位,目前感觉70B参数的最好。

对于Llama-3-8B,如果你使用英文开展业务,又不想太高的成本,不妨试试,但是需要做更多增强确定性的工作,比如优化提示词、做些微调之类的,至于中文能力还得等国内的厂商们再努力一把,目前还不太行。


Llama-3的在线体验地址请移步这里:性能直逼GPT4,Llama3的三种在线体验方式。

标签:中文,8B,模型,Llama3,Instruct,实测,Llama,问答
From: https://www.cnblogs.com/bossma/p/18151375

相关文章

  • 使用ollama分别在我的window、mac、小米手机上部署体验llama3-8b
    1、ollama到底是个什么玩意一句话来说,Ollama是一个基于Go语言开发的简单易用的本地大模型运行框架。可以将其类比为docker(有类似docker中的一些常规命令list,pull,push,run等等),事实上确实也制定了类似docker的一种模型应用标准,在后边的内容中,你能更加真切体会到这一点。......
  • llama3的改进
    llama2{"_name_or_path":"TheBloke/Llama-2-7B-fp16","architectures":["LlamaForCausalLM"],"bos_token_id":1,"eos_token_id":2,"hidden_act":"silu","hidden_size&qu......
  • 本地部署Llama3-8B/72b 并进行逻辑推理测试
    美国当地时间4月18日,Meta开源了Llama3大模型,目前开源版本为8B和70B。Llama3模型相比Llama2具有重大飞跃,并在8B和70B参数尺度上建立了LLM模型的新技术。由于预训练和后训练的改进,Llama3模型是目前在8B和70B参数尺度上存在的最好的模型。训练后程序的改进大大降低了错误拒绝率,改善......
  • 国内首家!百度智能云宣布支持Llama3全系列训练推理
    继18日Llama3的8B、70B大模型发布后,百度智能云千帆大模型平台19日宣布在国内首家推出针对Llama3全系列版本的训练推理方案,便于开发者进行再训练,搭建专属大模型,现已开放邀约测试。目前,百度智能云千帆大模型平台中各种尺寸模型定制工具ModelBuilder已预置了最全面最丰富的大模型,支......
  • httprunner 4.x学习 - 08base_url使用
    前言base_url是把所有接口的公共url提取出来,如我两个接口地址如下:imos登录接口:http://120.25.121.168:19001/api/login任务列表接口:http://120.25.121.168:19001/api/task这时,base_url:http://120.25.121.168:19001/api案例在.evn中设置环境变量base_url#.envbase_url=ht......
  • POI2008BBB-BBB
    Year2008#POI#贪心#数学考虑枚举旋转了几次,维护一个前缀和,一个前缀和的\(min\),目标为使和合法并使前缀\(min\)满足条件,这个代价就可以\(\mathcal{O}(1)\)计算//Author:xiaruizeconstintINF=0x3f3f3f3f3f3f3f3f;constintMOD=1000000007;constintN=2e6......
  • docker 报错:不能选择设备驱动 could not select device driver 的解决方法(实测有效)
    Ubuntu安装完docker引擎后,在创建容器的时候指定 --gpusall,出现报错如下:报错: docker:Errorresponsefromdaemon:couldnotselectdevicedriver""withcapabilities:[[gpu]].解决该问题还需要安装Nvidia-docker,本篇参照Nvidia官网。NVIDIAContainerToolkit在许多......
  • 实测ChatGPT、Bing、文心一言
    这两天高考逐渐落下了帷幕,对于普通人来说,高考仍然是为数不多的,可以改变命运的机会。想起自己的高考,已经是好多年前,那时候一个人去市里面参加考试,第一次睡在不熟悉的床上,痒了一晚上,实在是小姐身子丫鬟命。当时觉得考试很苦,在想若干年后应该不用考试了,现在看来,由于资源的有限性和需......
  • 腾讯云2核4G5M轻量服务器测评报告:在线并发人数实测及优惠购买地址分享
    在当今这个数据驱动的时代,云服务器的选择对于企业和个人而言都至关重要。其中,腾讯云2核4G5M轻量应用服务器因其高性价比而备受瞩目。那么,这款服务器到底能支持多少人同时在线呢?它的并发性能又如何呢?首先,我们要明白并发数是指同一时刻内,服务器能够处理的用户请求数量。对于腾讯......
  • 实测952Mbps!四路千兆网PCIe拓展方案,国产工业级!
    测试环境说明运行系统:Debian-11.8评估板:TL3588-EVM(RK3588J)模块:PCIe扩展2/4路千兆网口模块方案:无锡沐创N500L-AM2C-DD、N500L-AM4C-QD测试工具:iperf3 创龙科技已基于瑞芯微RK3588J、RK3568J处理器实现了PCIe拓展多路千兆网口方案,以下主要介绍基于瑞芯微RK3588J(硬件平台:创龙......