首页 > 其他分享 >ES聚合查询

ES聚合查询

时间:2022-10-16 11:55:55浏览次数:57  
标签:count 聚合 doc price 查询 key ticket avg ES

Elasticsearch的聚合查询分为四大类,分别是Bucket Aggregation、Metric Aggregation、Pipeline Aggregation、Matrix Aggregration。具体的四大类都是什么意思呢?都是怎么运用呢?
Bucket Aggregation :一些列满足特定条件的文档的集合
Metric Aggregation :一些数学运算,可以对文档字段进行统计分析
Pipline Aggregation :对其他的聚合结果进行二次聚合
Matrix Aggregration :支持对多个字段的操作并提供一个结果矩阵

Aggregation的语法

Aggregation属于search的一部分,一般情况下,建议将其Size指定为0

{
	"query":{
  	
  },
	"aggregations":{    // 和Query同级的关键词
  	"<aggregation_name>":{   // 自定义的聚合名字
    	"<aggregation_type>":{  // 聚合定义:不同的Type+body
      	<aggregation_body>
      }
			[,"meta":{[<meta_data_body>]}]?
    	[,"aggregations":{[<sub_aggregation>]+}]?  // 子聚合查询
    }
  	[,"<aggregation_name_2>":{}]*
  }
}

以下案例使用Kibana中自带的Sample Data的飞机航班数据进行讲解,请先导入数据
具体的聚合类型有哪些,怎么使用,请查看官网

Bucket Aggregation

  • 类似于SQL语句中的group by,对指定字段进行分桶。ES中提供很多类型的Bucket,使用较多的是Terms

& Range

Terms Aggregation
  • Terms聚合操作的字段需要打开fielddata,其中keyword默认支持doc_values,Text需要在Mapping中enable,然后按照分词后的结果进行分桶
##使用terms 聚合桶 按照目的地进行分桶统计
GET kibana_sample_data_flights/_search
{
  "size": 0,  ## 条数为0,获取结果是不展示具体条数
  "aggs":{    ## 聚合固定写法
      "flight_dest":{  ## 聚合的名称
          "terms":{    ## term查询排序
              "field":"DestCountry"   ## 需要聚合的字段
          }
      }
  }
}

## 结果展示
{
  "took" : 36,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "flight_dest" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 3187,
      "buckets" : [
        {
          "key" : "IT",
          "doc_count" : 2371
        },
        {
          "key" : "US",
          "doc_count" : 1987
        },
        {
          "key" : "CN",
          "doc_count" : 1096
        },
        {
          "key" : "CA",
          "doc_count" : 944
        },
        {
          "key" : "JP",
          "doc_count" : 774
        },
        {
          "key" : "RU",
          "doc_count" : 739
        },
        {
          "key" : "CH",
          "doc_count" : 691
        },
        {
          "key" : "GB",
          "doc_count" : 449
        },
        {
          "key" : "AU",
          "doc_count" : 416
        },
        {
          "key" : "PL",
          "doc_count" : 405
        }
      ]
    }
  }
}


## 使用terms 按目的地分桶后,按延误类型再分桶,多次聚合操作
GET kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs":{    
      "flight_dest_delay":{  
          "terms":{    
              "field":"DestCountry"
          },
          "aggs":{
            "flight_delay_type":{
              "terms":{
                "field": "FlightDelayType"
              }
            }
          }
      }
  }
}


## 展示结果如下
 "aggregations" : {
    "flight_dest_delay" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 3187,
      "buckets" : [
        {
          "key" : "IT",
          "doc_count" : 2371,
          "flight_delay_type" : {
            "doc_count_error_upper_bound" : 0,
            "sum_other_doc_count" : 0,
            "buckets" : [
              {
                "key" : "No Delay",
                "doc_count" : 1722
              },
              {
                "key" : "NAS Delay",
                "doc_count" : 180
              },
              {
                "key" : "Carrier Delay",
                "doc_count" : 168
              },
              {
                "key" : "Late Aircraft Delay",
                "doc_count" : 164
              },
              {
                "key" : "Weather Delay",
                "doc_count" : 74
              },
              {
                "key" : "Security Delay",
                "doc_count" : 63
              }
            ]
          }
        }
			]
    }
  }

Range Aggregation
## 使用平均票价进行范围聚合
GET kibana_sample_data_flights/_search
{
  "size": 0, 
  "aggs":{    
      "flight_avg_ticket_price":{  
          "range":{    
              "field":"AvgTicketPrice",
              "ranges": [
                {"to":200},
                {"from":200,"to":500},
                {"from":500}
              ]
          }
         
      }
  }
}

## 结果展示
{
  "took" : 17,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "flight_time_hour" : {
      "buckets" : [
        {
          "key" : "*-200.0",
          "to" : 200.0,
          "doc_count" : 749
        },
        {
          "key" : "200.0-500.0",
          "from" : 200.0,
          "to" : 500.0,
          "doc_count" : 3662
        },
        {
          "key" : "500.0-*",
          "from" : 500.0,
          "doc_count" : 8648
        }
      ]
    }
  }
}
Histogram Aggregation
GET kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "ticket_price_histrogram": {
      "histogram": {
        "field":"AvgTicketPrice",
        "interval":300,
        "extended_bounds":{
          "min":0,
          "max":1500
        }
      }
    }
  }
}

## 展示结果
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "ticket_price_histrogram" : {
      "buckets" : [
        {
          "key" : 0.0,
          "doc_count" : 1816
        },
        {
          "key" : 300.0,
          "doc_count" : 4115
        },
        {
          "key" : 600.0,
          "doc_count" : 4765
        },
        {
          "key" : 900.0,
          "doc_count" : 2363
        },
        {
          "key" : 1200.0,
          "doc_count" : 0
        },
        {
          "key" : 1500.0,
          "doc_count" : 0
        }
      ]
    }
  }
}

Metric Aggregation

  • 做具体分析结果,可以单值分析,比如 min,max,avg,sum,Cardinality(类似distinct count),多值分析,比如 stats, percentile,top hits 等
min,max,avg,sum,stats Aggregation
## 一个请求中查询平均票价最低,平均,最高,还有汇总的情况
GET kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "avg_price": {
      "avg": {
        "field": "AvgTicketPrice"
      }
    },
    "max_price": {
      "max": {
        "field": "AvgTicketPrice"
      }
    },
    "min_price": {
      "min": {
        "field": "AvgTicketPrice"
      }
    },
    "status":{
      "stats": {
        "field": "AvgTicketPrice"
      }
    }
  }
}

## 结果展示如下
{
  "took" : 13,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "max_price" : {
      "value" : 1199.72900390625
    },
    "min_price" : {
      "value" : 100.0205307006836
    },
    "avg_price" : {
      "value" : 628.2536888148849
    },
    "status" : {
      "count" : 13059,
      "min" : 100.0205307006836,
      "max" : 1199.72900390625,
      "avg" : 628.2536888148849,
      "sum" : 8204364.922233582
    }
  }
}

Pipline Aggregation

  • 管道聚合:支持对聚合分析的结果,再次进行聚合分析。根据位置的不同,管道聚合结果输出到原结果的方式有两类
    1. Parent - 结果内嵌到现有的聚合分析结果中
      • Derivative (求导)
      • Cumultive Sum (累计求和)
      • Moving Function (滑动窗口)
    2. Slibing - 结果和现有分析结果同级
      • Max,min,Avg,Sum
      • Stats,Extended Stats
      • Percentiles
Slibing 方式
## stats
GET kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "dest_country": {
      "terms": {
        "field": "DestCountry"
      },
      "aggs": {
        "avg_ticket_price": {
          "avg": {
            "field": "AvgTicketPrice"
          }
        }
      }
    },
    "stats_price_by_dest":{
      "stats_bucket": {
        "buckets_path": "dest_country>avg_ticket_price"
      }
    }
  }
}

## 结果展示
{
  "took" : 25,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "dest_country" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 3187,
      "buckets" : [
        {
          "key" : "IT",
          "doc_count" : 2371,
          "avg_ticket_price" : {
            "value" : 586.9627099618385
          }
        },
        {
          "key" : "US",
          "doc_count" : 1987,
          "avg_ticket_price" : {
            "value" : 595.7743908825026
          }
        },
        {
          "key" : "CN",
          "doc_count" : 1096,
          "avg_ticket_price" : {
            "value" : 640.7101617033464
          }
        },
        {
          "key" : "CA",
          "doc_count" : 944,
          "avg_ticket_price" : {
            "value" : 648.7471090413757
          }
        },
        {
          "key" : "JP",
          "doc_count" : 774,
          "avg_ticket_price" : {
            "value" : 650.9203447346847
          }
        },
        {
          "key" : "RU",
          "doc_count" : 739,
          "avg_ticket_price" : {
            "value" : 662.9949632162009
          }
        },
        {
          "key" : "CH",
          "doc_count" : 691,
          "avg_ticket_price" : {
            "value" : 575.1067587028537
          }
        },
        {
          "key" : "GB",
          "doc_count" : 449,
          "avg_ticket_price" : {
            "value" : 650.5326856005696
          }
        },
        {
          "key" : "AU",
          "doc_count" : 416,
          "avg_ticket_price" : {
            "value" : 669.5588319668403
          }
        },
        {
          "key" : "PL",
          "doc_count" : 405,
          "avg_ticket_price" : {
            "value" : 662.4497233072917
          }
        }
      ]
    },
    "stats_price_by_dest" : {
      "count" : 10,
      "min" : 575.1067587028537,
      "max" : 669.5588319668403,
      "avg" : 634.3757679117504,
      "sum" : 6343.757679117503
    }
  }
}



## percentiles
GET kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "dest_country": {
      "terms": {
        "field": "DestCountry"
      },
      "aggs": {
        "avg_ticket_price": {
          "avg": {
            "field": "AvgTicketPrice"
          }
        }
      }
    },
    "percent_price_by_dest":{
      "percentiles_bucket": {
        "buckets_path": "dest_country>avg_ticket_price"
      }
    }
  }
}
## 结果展示
{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "dest_country" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 3187,
      "buckets" : [
        {
          "key" : "IT",
          "doc_count" : 2371,
          "avg_ticket_price" : {
            "value" : 586.9627099618385
          }
        },
        {
          "key" : "US",
          "doc_count" : 1987,
          "avg_ticket_price" : {
            "value" : 595.7743908825026
          }
        },
        {
          "key" : "CN",
          "doc_count" : 1096,
          "avg_ticket_price" : {
            "value" : 640.7101617033464
          }
        },
        {
          "key" : "CA",
          "doc_count" : 944,
          "avg_ticket_price" : {
            "value" : 648.7471090413757
          }
        },
        {
          "key" : "JP",
          "doc_count" : 774,
          "avg_ticket_price" : {
            "value" : 650.9203447346847
          }
        },
        {
          "key" : "RU",
          "doc_count" : 739,
          "avg_ticket_price" : {
            "value" : 662.9949632162009
          }
        },
        {
          "key" : "CH",
          "doc_count" : 691,
          "avg_ticket_price" : {
            "value" : 575.1067587028537
          }
        },
        {
          "key" : "GB",
          "doc_count" : 449,
          "avg_ticket_price" : {
            "value" : 650.5326856005696
          }
        },
        {
          "key" : "AU",
          "doc_count" : 416,
          "avg_ticket_price" : {
            "value" : 669.5588319668403
          }
        },
        {
          "key" : "PL",
          "doc_count" : 405,
          "avg_ticket_price" : {
            "value" : 662.4497233072917
          }
        }
      ]
    },
    "percent_price_by_dest" : {
      "values" : {
        "1.0" : 575.1067587028537,
        "5.0" : 575.1067587028537,
        "25.0" : 595.7743908825026,
        "50.0" : 650.5326856005696,
        "75.0" : 662.4497233072917,
        "95.0" : 669.5588319668403,
        "99.0" : 669.5588319668403
      }
    }
  }
}
Parent 方式
## 求导
POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "age": {
      "histogram": {
        "field": "DistanceMiles",
        "min_doc_count": 1,
        "interval": 3000
      },
      "aggs": {
        "avg_ticket_price": {
          "avg": {
            "field": "AvgTicketPrice"
          }
        },
        "derivative_avg_ticket_price":{
          "derivative": {
            "buckets_path": "avg_ticket_price"
          }
        }
      }
    }
  }
}

## 结果
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age" : {
      "buckets" : [
        {
          "key" : 0.0,
          "doc_count" : 4009,
          "avg_ticket_price" : {
            "value" : 511.68695465910014
          }
        },
        {
          "key" : 3000.0,
          "doc_count" : 5644,
          "avg_ticket_price" : {
            "value" : 676.1384397110645
          },
          "derivative_avg_ticket_price" : {
            "value" : 164.45148505196437
          }
        },
        {
          "key" : 6000.0,
          "doc_count" : 2513,
          "avg_ticket_price" : {
            "value" : 687.4682523922478
          },
          "derivative_avg_ticket_price" : {
            "value" : 11.329812681183284
          }
        },
        {
          "key" : 9000.0,
          "doc_count" : 866,
          "avg_ticket_price" : {
            "value" : 681.8708027229574
          },
          "derivative_avg_ticket_price" : {
            "value" : -5.597449669290427
          }
        },
        {
          "key" : 12000.0,
          "doc_count" : 27,
          "avg_ticket_price" : {
            "value" : 695.5086613407841
          },
          "derivative_avg_ticket_price" : {
            "value" : 13.637858617826737
          }
        }
      ]
    }
  }
}



## 汇总
POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "age": {
      "histogram": {
        "field": "DistanceMiles",
        "min_doc_count": 1,
        "interval": 3000
      },
      "aggs": {
        "avg_ticket_price": {
          "avg": {
            "field": "AvgTicketPrice"
          }
        },
        "cumulative_avg_ticket_price":{
          "cumulative_sum": {
            "buckets_path": "avg_ticket_price"
          }
        }
      }
    }
  }
}

## 结果展示
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age" : {
      "buckets" : [
        {
          "key" : 0.0,
          "doc_count" : 4009,
          "avg_ticket_price" : {
            "value" : 511.68695465910014
          },
          "cumulative_avg_ticket_price" : {
            "value" : 511.68695465910014
          }
        },
        {
          "key" : 3000.0,
          "doc_count" : 5644,
          "avg_ticket_price" : {
            "value" : 676.1384397110645
          },
          "cumulative_avg_ticket_price" : {
            "value" : 1187.8253943701648
          }
        },
        {
          "key" : 6000.0,
          "doc_count" : 2513,
          "avg_ticket_price" : {
            "value" : 687.4682523922478
          },
          "cumulative_avg_ticket_price" : {
            "value" : 1875.2936467624127
          }
        },
        {
          "key" : 9000.0,
          "doc_count" : 866,
          "avg_ticket_price" : {
            "value" : 681.8708027229574
          },
          "cumulative_avg_ticket_price" : {
            "value" : 2557.16444948537
          }
        },
        {
          "key" : 12000.0,
          "doc_count" : 27,
          "avg_ticket_price" : {
            "value" : 695.5086613407841
          },
          "cumulative_avg_ticket_price" : {
            "value" : 3252.673110826154
          }
        }
      ]
    }
  }
}



## 滑动窗口
POST kibana_sample_data_flights/_search
{
  "size": 0,
  "aggs": {
    "age": {
      "histogram": {
        "field": "DistanceMiles",
        "min_doc_count": 1,
        "interval": 3000
      },
      "aggs": {
        "avg_ticket_price": {
          "avg": {
            "field": "AvgTicketPrice"
          }
        },
        "moving_avg_ticket_price":{
          "moving_fn": {
            "buckets_path": "avg_ticket_price",
            "window":10,
            "script": "MovingFunctions.min(values)"
          }
        }
      }
    }
  }
}

## 结果展示
{
  "took" : 9,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age" : {
      "buckets" : [
        {
          "key" : 0.0,
          "doc_count" : 4009,
          "avg_ticket_price" : {
            "value" : 511.68695465910014
          },
          "moving_avg_ticket_price" : {
            "value" : null
          }
        },
        {
          "key" : 3000.0,
          "doc_count" : 5644,
          "avg_ticket_price" : {
            "value" : 676.1384397110645
          },
          "moving_avg_ticket_price" : {
            "value" : 511.68695465910014
          }
        },
        {
          "key" : 6000.0,
          "doc_count" : 2513,
          "avg_ticket_price" : {
            "value" : 687.4682523922478
          },
          "moving_avg_ticket_price" : {
            "value" : 511.68695465910014
          }
        },
        {
          "key" : 9000.0,
          "doc_count" : 866,
          "avg_ticket_price" : {
            "value" : 681.8708027229574
          },
          "moving_avg_ticket_price" : {
            "value" : 511.68695465910014
          }
        },
        {
          "key" : 12000.0,
          "doc_count" : 27,
          "avg_ticket_price" : {
            "value" : 695.5086613407841
          },
          "moving_avg_ticket_price" : {
            "value" : 511.68695465910014
          }
        }
      ]
    }
  }
}


标签:count,聚合,doc,price,查询,key,ticket,avg,ES
From: https://www.cnblogs.com/tenic/p/16795887.html

相关文章

  • ES中的DSL语句操作
    ES中的查询分为URISearch、RequestBodySearch。URISearch-在URL中使用查询参数。RequestBodySearch-使用JSON格式的入参作为查询条件。DSL语句就是基于Reques......
  • ES中的一些基本概念以及和关系数据库对比
    以下总结点为自己思路总结,有不正确地方,请斧正。ES中的基本概念一……索引索引:存放在ES中同一个类型文档的集合叫做ES中的索引,类似于关系数据库中的TableES中的基......
  • kubernetes学习笔记4-pod
    Pod资源定义​自主式pod资源,很少用到,手动创建的资源,用kubectldelete后不会自动创建,而使用pod控制器管理的才会按照用户期望的重新创建;​资源清单:一级字段(apiVersion|kind|m......
  • 绝杀processOn,这款UML画图神器,阿里字节都用疯了,你还不知道?
    大家好,我是陶朱公Boy,又和大家见面了。前言在文章开始前,想先问大家一个问题,大家平时在项目需求评审完后,是直接开始编码了呢?还是会先写详细设计文档,后再开始进行编码开发......
  • 实现查询连续3天登陆的用户
    sql写出连续三天都登录的用户1、创建表createtabletest_user_login_3days(user_idint,login_datestring); 2、数据准备insertintotest_user_login_3daysvalue......
  • Pytest进阶使用
    fixture特点:命令灵活:对于setup,teardown可以省略数据共享:在conftest.py配置里写方法可以实现数据共享,不需要import导入,可以跨文件共享scope的层次及神奇的yield组......
  • 【解决】Intellij IDEA打开报错Caused by: java.net.BindException: Address already
    jetbrainsPyCharmWebStormcom.intellij.ide.plugins.StartupAbortedException:Cannotstartapp原因是IDEA需要在端口6942~6991间找到一个可用端口并绑定但目前这个......
  • Codeforces Global Round 23 题解
    ContestLink我是智障。A.MaxminaProblemLink显然当数组中全是\(0\)的时候,最后不可能变成\(1\),因为我们只有相邻取\(\min\)和区间取\(\max\)两种操作,并没有任......
  • Codeforces试题乱做 Part8
    搬机房的第一天.\(\text{[CF1270I]XoronFigures}\)\(\color{red}{\text{[HARD]}}\)为数不多的\(3500\)清新题.观察到这是个二维循环卷积的形式,考虑矩阵刻画.重......
  • 再一次体会ResizeRedraw = true;的作用
    先放入正常的代码,如下:1usingSystem;2usingSystem.Collections.Generic;3usingSystem.Linq;4usingSystem.Text;5usingSystem.Drawing;6usingSyste......