前言
今天读的论文为一篇于2022年7月7日发表在第45届国际ACM信息检索研究与发展会议论文集(Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.)的论文,文章主要讲述了序列推荐系统(SRSs)和基于会话的推荐系统(SBRSs)作为推荐系统领域的新范式,它们的目的是捕捉用户的短期且动态变化的偏好,以便提供更加及时和准确的推荐。文章指出,尽管这一领域已被广泛研究,但仍存在许多由于不同描述、设置、假设和应用背景导致的不一致性。目前还没有工作提出一个统一的框架或问题定义来消除这些不一致性。此外,文章还提到了现有研究中缺乏对这些系统的全面和系统性分析,包括数据特性、关键挑战、最先进的方法、现实世界的应用,以及未来研究的重要方向。文章的目标是填补这些研究空白,促进该领域的发展。
第45届国际ACM信息检索研究与发展会议论文集是由ACM(Association for Computing Machinery)出版的一本关于信息检索领域的学术论文集。这本论文集收录了在该会议上发表的高质量研究论文,涵盖了信息检索领域的各个方面,包括搜索引擎、文本挖掘、自然语言处理、机器学习等。这些论文主要关注信息检索技术的最新发展和创新,以及在实际应用中的挑战和解决方案。这些研究成果对于推动信息检索技术的发展和应用具有重要意义,同时也为相关领域的研究人员和实践者提供了宝贵的参考资源。这本论文集的内容经过严格的同行评审,确保了论文的质量和学术价值。作为信息检索领域的重要学术会议,第45届国际ACM信息检索研究与发展会议论文集对于研究者、工程师和学生来说,是了解该领域最新研究动态和技术进展的重要途径。
要引用这篇论文,请使用以下格式:
Wang, Shou**, et al. "Sequential/Session-based Recommendations: Challenges, Approaches, Applications and Opportunities." Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022.
摘要
In recent years, sequential recommender systems (SRSs) and sessionbased recommender systems (SBRSs) have emerged as a new paradigm of RSs to capture users’ short-term but dynamic preferences for enabling more timely and accurate recommendations. Although SRSs and SBRSs have been extensively studied, there are many inconsistencies in this area caused by the diverse descriptions, settings, assumptions and application domains. There is no work to provide a unified framework and problem statement to remove the commonly existing and various inconsistencies in the area of SR/SBR. There is a lack of work to provide a comprehensive and systematic demonstration of the data characteristics, key challenges, most representative and state-of-the-art approaches, typical realworld applications and important future research directions in the area. This work aims to fill in these gaps so as to facilitate further research in this exciting and vibrant area.
近年来,序列推荐系统(SRSs)和基于会话的推荐系统(SBRSs)作为推荐系统(RSs)的新范式出现,用于捕捉用户的短期但动态偏好,以实现更及时、更准确的推荐。尽管SRSs和SBRSs已被广泛研究,但由于描述、设置、假设和应用域的多样性,该领域存在许多不一致之处。目前还没有工作提供一个统一的框架和问题陈述来消除SR/SBR领域中普遍存在的各种不一致。同时,也缺乏全面系统地展示该领域的数据特征、关键挑战、最具代表性和最先进的方法、典型的现实世界应用以及重要的未来研究方向的工作。本项工作旨在填补这些空白,以便促进这一令人兴奋且充满活力的领域的进一步研究。
总结来说,文章给你主要讲了以下要点:
- 序列推荐系统(SRSs)和基于会话的推荐系统(SBRSs)是新兴的推荐系统范式。
- 它们专注于捕获用户的短期动态偏好,以提供更及时准确的推荐。
- 该领域存在许多由于多样性造成的不一致。
- 缺乏统一的框架和问题陈述来解决这些不一致。
- 需要全面系统的分析来展示数据特征、挑战、最新方法和未来方向。
- 本项工作的目标是填补这些研究空白,推动领域发展。
引言
Recommender systems (RSs) have been playing an increasingly important role in informed consumption, and decision-making in the current era of information explosion and digitized economy [12]. In recent years, sequential recommender systems (SRSs) and sessionbased recommender systems (SBRSs) have emerged as a new paradigm of RSs to capture users’ short-term but dynamic preferences for enabling more timely and accurate recommendations [14]. SRSs and SBRSs have been quite important and popular research areas in the recommendation communities, which have attracted much attention from both academia and industry. SRSs and SBRSs are highly correlated and similar in terms of the input, output and recommendation mechanism, and most of the representative approaches for building SRSs and SBRSs are very similar. Therefore, we present this work to cover both SRSs and SBRSs. The key challenge of building SRSs/SBRSs lies in how to comprehensively learn the complex dependencies embedded within and between sequences/sessions to accurately infer users’ timely and dynamic preferences [12]. In recent years, there has been some promising progress in tackling this challenge, including, e.g., Markov chain based approaches [10], distributed representation based approaches [13], recurrent neural network (RNN) based approaches [4], graph neural network (GNN) based approaches [15, 16], reinforcement learning-based approaches [17] and contrastive learn-ing-based approaches [6]. Although SRSs and SBRSs have been extensively studied in recent years, there are many inconsistencies within each area and/or between both areas, caused by the diverse description terms, scenario settings, employed assumptions and application domains. There is a lack of a unified framework to well categorize them, and there are no unified problem statements for the research problem(s) [12]. A few tutorials have focused on sequence-aware recommender systems [9], deep learning-based sequential recommendations [2], and session-based recommendation on GPU [1]. However, there is no work to provide a unified framework and problem statement to remove the commonly existing and various inconsistencies in the areas of SRSs and SBRSs. There is a lack of work to provide a comprehensive and systematic demonstration of the data characteristics, key challenges, most representative and state-of-the-art approaches, typical real-world applications and important future research directions in the area of SRSs and SBRSs. This work aims to fill in these gaps so as to facilitate further research in this exciting and vibrant area.
推荐系统(RSs)在当前信息爆炸和数字经济时代,对于信息化消费和决策制定扮演着越来越重要的角色。近年来,序列推荐系统(SRSs)和基于会话的推荐系统(SBRSs)作为推荐系统的新兴范式出现,用于捕捉用户的短期但动态偏好,以实现更及时、更准确的推荐。SRSs和SBRSs已成为推荐社区非常重要且受欢迎的研究领域,吸引了学术界和工业界的广泛关注。SRSs和SBRSs在输入、输出和推荐机制方面高度相关且相似,构建SRSs和SBRSs的大多数代表性方法也非常类似。因此,我们提出了这项工作来涵盖SRSs和SBRSs。构建SRSs/SBRSs的关键挑战在于如何全面学习序列/会话内部和之间的复杂依赖关系,以准确推断用户的及时和动态偏好。近年来,在应对这一挑战方面取得了一些有希望的进展,包括基于马尔可夫链的方法、基于分布式表示的方法、基于循环神经网络(RNN)的方法、基于图神经网络(GNN)的方法、基于强化学习的方法以及基于对比学习的方法。尽管近年来对SRSs和SBRSs进行了广泛研究,但由于描述术语、情景设置、所采用的假设和应用域的多样性,每个领域内部和/或两个领域之间存在许多不一致性。缺乏一个统一的框架来很好地对它们进行分类,也没有针对研究问题的统一问题陈述。一些教程关注了序列感知推荐系统、基于深度学习的序列推荐和GPU上的基于会话的推荐。然而,目前还没有工作提供一个统一的框架和问题陈述来消除SRSs和SBRSs领域中普遍存在的各种不一致性。同时,也缺乏提供数据特征、关键挑战、最具代表性和最先进的方法、典型的现实世界应用以及SRSs和SBRSs领域重要未来研究方向的全面和系统性展示的工作。本项工作旨在填补这些空白,以便促进这一令人兴奋且充满活力的领域的进一步研究。
总结来说,这段话概述了推荐系统特别是序列推荐系统和基于会话的推荐系统的重要性和发展状况。它强调了这些系统在捕捉用户短期偏好方面的重要作用,并指出了构建这些系统时面临的挑战。文章还提到了现有的研究进展和存在的不一致性问题,并提出了本项工作的目标,即通过提供统一的框架和全面分析来推动这一研究领域的发展。
引言部分要点:
- 推荐系统在信息化消费和决策中很重要。
- 序列推荐系统和基于会话的推荐系统是新范式,用于捕获用户短期动态偏好。
- 两者在学术界和工业界都很受欢迎,有许多相似之处。
- 构建这些系统的挑战在于学习序列/会话内的复杂依赖性。
- 已有进展包括多种方法,如马尔可夫链、分布式表示、RNN、GNN等。
- 存在不一致性,需要统一框架和问题陈述。
- 缺乏对这些系统的全面分析,包括数据特性、挑战、方法和未来方向。
- 本工作旨在解决这些问题,推动领域发展。
RELATED WORK
There are some surveys and tutorials focusing on the topic of SRSs or SBRSs. For SRSs, Quadrana et al. performed a comprehensive survey [8] together with two tutorials [7, 9] at WWW 2019 and RecSys 2018 on sequence-aware recommender systems, which talk about the recommendation task, algorithms and evaluations of SRSs. Fang et al. provided a survey [3] and presented a tutorial [2] at ICWE 2019 both on deep learning based sequential recommendations. They discussed various aspects of SRSs including the concepts, algorithms, influential factors, and evaluations; Wang et al. [14] conducted a brief review on the challenges, progress and prospects of SRSs. Regarding SBRSs, to the best of our knowledge, there is only one comprehensive survey on SBRSs [12] to systematically discuss the session-based recommendation problem, data characteristics, recent progress, approach taxonomy, applications and future directions. Ludewig et al. [5] conducted an empirical study on some representative SBRS algorithms while Gabriel et al. [1] provided a tutorial on session-based recommendation on GPU. These existing works have great value in treating specifics of research in more detail in the area of SRSs or SBRSs. However, they often focus on either SRSs or SBRSs, and none of them can systematically focus on both SRSs and SBRSs to systematically talk about the difference and similarities of SRSs and SBRSs, as well as to address the commonly existing inconsistencies w.r.t. concepts, settings, etc. between them. This work is well complementary to those related works by providing a more complete summarization of sequential and session-based recommendations with an emphasis on the problem statement, data characteristics and challenges, applications and prospects, and comprehensive analysis of all kinds of state-of-the-art approaches, models and algorithms. Specifically, it performs a comprehensive review of the latest survey papers on the sequential and session-based recommendations.
有一些调查和教程关注SRSs或SBRSs的话题。对于SRSs,Quadrana等人在WWW 2019和RecSys 2018进行了一项全面的调查[8]以及两个教程[7, 9],讨论了序列感知推荐系统的推荐任务、算法和评估。Fang等人在ICWE 2019提供了一个调查[3]并呈现了一个关于基于深度学习的序列推荐的教程[2]。他们讨论了SRSs的各个方面,包括概念、算法、影响因素和评估;Wang等人[14]对SRSs的挑战、进展和前景进行了简要回顾。关于SBRSs,据我们所知,只有一项关于SBRSs的全面调查[12]系统地讨论了基于会话的推荐问题、数据特性、近期进展、方法分类、应用和未来方向。Ludewig等人[5]对一些代表性的SBRS算法进行了实证研究,而Gabriel等人[1]提供了关于GPU上的基于会话的推荐的教程。这些现有工作在更详细地处理SRSs或SBRSs领域的具体研究方面具有很大的价值。然而,它们通常只关注SRSs或SBRSs,没有一项能够系统地关注SRSs和SBRSs两者,系统地讨论SRSs和SBRSs的差异和相似性,以及解决它们之间在概念、设置等方面的常见不一致性。本项工作通过提供更完整的序列和基于会话的推荐总结,强调问题陈述、数据特性和挑战、应用和前景,以及对各种最新方法、模型和算法的全面分析,与这些相关工作形成了很好的互补。具体来说,它对序列和基于会话的推荐的最新调查论文进行了全面的回顾。
- Quadrana等人对SRSs进行了全面调查,并提供了相关教程。
- Fang等人对基于深度学习的SRSs进行了调查和教程。
- Wang等人回顾了SRSs的挑战、进展和前景。
- 有一项全面调查专门讨论了SBRSs的问题、数据特性、进展、方法和未来方向。
- Ludewig等人对SBRS算法进行了实证研究。
- Gabriel等人提供了关于GPU上的SBRS的教程。
- 现有工作通常只关注SRSs或SBRSs,没有系统地讨论两者的差异和相似性。
- 本项工作提供了更完整的总结,强调问题陈述、数据特性和挑战、应用和前景,以及对最新方法、模型和算法的全面分析。
这部分概述了关于序列推荐系统(SRSs)和基于会话的推荐系统(SBRSs)的研究现状,提到了一些关键的调查和教程。它指出了现有研究的局限性,即通常只关注SRSs或SBRSs中的一个,而没有系统地比较两者。最后,它强调了本项工作的价值,即提供了一个更全面的总结,包括问题陈述、数据特性和挑战、应用和前景,以及对最新方法、模型和算法的全面分析。
AN OVERVIEW OF THIS WORK
This work will perform a systematic and high-level review of the most notable works to date on SRSs/SBRSs. It will contain five parts: • Part 1 Introduction and Problem Statement. This part will first introduce the background of SRSs and SBRSs with an emphasis on the comparison between them, followed by a unified problem statement of SRSs/SBRSs. • Part 2 Data Characteristics and Challenges. This part will thoroughly analyze the characteristics of data used for SRSs and SBRSs and the main challenges triggered by them. • Part 3 Sequential/Session-Based Recommendation Approaches. This part will first provide a classification scheme to well organize all the existing approaches to SRSs and SBRSs and then highlight the most recent advance in each class of approaches. • Part 4 Applications and Algorithms. This part will introduce both the traditional and emerging real-world applications of SRSs and SBRSs and a collection of representative and state-of-the-art SRSs/SBRSs algorithms together with public datasets. • Part 5 Future Opportunities. This part will discuss some of the most promising directions in the area and conclude this tutorial.
本项工作将对迄今为止关于SRSs/SBRSs的最显著成果进行系统且高层次的回顾。它将包含五个部分:
- 第一部分:引言和问题陈述。这部分将首先介绍SRSs和SBRSs的背景,并强调两者之间的比较,然后是SRSs/SBRSs的统一问题陈述。
- 第二部分:数据特性和挑战。这部分将彻底分析用于SRSs和SBRSs的数据特性以及由此引发的主要挑战。
- 第三部分:序列/基于会话的推荐方法。这部分将首先提供一个分类方案,以很好地组织所有现有的SRSs和SBRSs方法,然后在每一类方法中突出最新的进展。
- 第四部分:应用和算法。这部分将介绍SRSs和SBRSs的传统和新兴的现实世界应用,以及一系列代表性和最先进的SRSs/SBRSs算法和公共数据集。
- 第五部分:未来机会。这部分将讨论该领域中一些最有前景的方向,并总结本次教程。
这部分概述了一篇关于序列推荐系统(SRSs)和基于会话的推荐系统(SBRSs)的综述文章的结构和内容。文章将分为五个部分,分别介绍这两种推荐系统的背景和问题陈述、数据特性和挑战、推荐方法、应用和算法,以及未来的研究方向。这篇文章旨在对SRSs和SBRSs的现有研究进行系统的梳理和总结,为读者提供一个全面的了解。
BACKGROUND AND PROBLEM STATEMENT
SRSs vs SBRSs
Generally, SRSs and SBRSs take sequence data and session data as its input respectively. A session is a set of interactions with clear boundary and the interactions may be ordered or unordered. A sequence is a list a elements (such as item IDs) with clear chronological order. SBRSs either predict the next interaction(s) based on the given historical interactions within a session, or predict the future session (e.g., the next-basket) based on the historical sessions, which mainly depends on the intra- or inter-session dependencies. In comparison, SRSs predict the following elements of a sequence given the historical elements in the sequence, which mainly relies on the sequential or temporal dependencies over the elements inside each sequence [11, 12].
通常,SRSs和SBRSs分别以序列数据和会话数据作为输入。会话是一系列具有明确边界的交互,这些交互可能是有序的或无序的。序列是一个元素列表(如项目ID),具有明确的时间顺序。SBRSs基于给定会话内的历史交互预测下一次交互(们),或者基于历史会话预测未来的会话(例如下一个篮子),这主要取决于内部或外部会话依赖性。相比之下,SRSs根据序列中的历史元素预测序列的后续元素,这主要依赖于每个序列内部元素的序列或时间依赖性[11, 12]。
要点总结:
- SRSs和SBRSs分别使用序列数据和会话数据作为输入。
- 会话是一系列具有明确边界的交互,可以是有序或无序的。
- 序列是一个具有明确时间顺序的元素列表。
- SBRSs依赖于内部或外部会话依赖性来预测下一次交互或未来会话。
- SRSs依赖于序列内部元素的序列或时间依赖性来预测后续元素。
这个部分主要介绍了序列推荐系统(SRSs)和基于会话的推荐系统(SBRSs)的基本概念和它们的工作原理。SRSs和SBRSs分别处理序列数据和会话数据,它们在预测用户行为时依赖于不同类型的数据依赖性。SRSs依赖于序列内部元素的序列或时间依赖性,而SBRSs依赖于会话内部或会话之间的依赖性。这段文字为理解这两种推荐系统的工作方式提供了基本的背景信息。
Sequential/Session-based Recommendation Problem Statement
There are five entities (namely User, Item, Action, Interaction and Sequence/Session) involved in sequential/session-based recommendation scenarios and they constitute the foundations for defining the sequential/session-based recommendation research problems. We first provide a brief introduction of each of them and then define the sequential/session-based recommendation research problem. • User and User Properties. • Item and Item Properties. • Action and Action Properties. Actions refers to users’ actions on items, such as clicks, views, purchases. • Interaction and Interaction Properties. An interaction is a triplet of ⟨
标签:SRSs,based,推荐,Opportunities,会话,Session,序列,SBRSs From: https://www.cnblogs.com/wephilos/p/18119934