首页 > 其他分享 >LLM应用实战:当KBQA集成LLM

LLM应用实战:当KBQA集成LLM

时间:2024-04-11 11:04:10浏览次数:26  
标签:实战 prompt 实体 KBQA LLM 对齐 解析 属性

1. 背景

应项目需求,本qiang~这两周全身心投入了进去。

项目是关于一个博物馆知识图谱,上层做KBQA应用。实现要求是将传统KBQA中的部分模块,如NLU、指代消解、实体对齐等任务,完全由LLM实现,本qiang~针对该任务还是灰常感兴趣的,遂开展了项目研发工作。

注意,此篇是纯纯的干货篇,除了源码没有提供外,整体核心组件均展示了出来。也是这两周工作的整体总结,欢迎大家查阅以及加关注(不强求哈~)

2. 整体框架

 

 

整体思想还是遵循RAG策略,从图谱召回候选背景知识,让LLM进行润色回答。

具体的流程如下:

(1) 用户提问:已发现的体重最大的肉食性恐龙是什么

(2) 对齐模块。

对齐模块的主要作用是针对问题与知识图谱中的实体、概念、关系、属性进行对齐。

其中候选概念、候选属性、候选关系在图谱中的数量是少量有限的,而实体的数量可多可少,因此候选概念、候选属性、候选关系可以在查询hugegraph后,直接拼到对齐prompt中(对齐的prompt预留了占位符),而实体则需要进行预筛选,筛选的方式是通过问题query与实体名进行语义相似度比较,通过语义相似度引擎实现,比如simbert, bge, gte等开源模型,预筛选后的少量实体可以拼接到对齐prompt。

对齐的prompt增加要求和few-shot示例,可以解决常见对齐问题,比如实体、概念、属性、关系存在缺字、多字、相似字等情况。

(3) 对齐模块经过LLM进行对齐,输出对齐结果。

本示例的对齐结果为:(属性-等于-体重)且(属性值-等于-最大); (属性-等于-食性)且(属性值-等于-肉食性);(概念-等于-恐龙)。

(4) 对齐校准模块。

对齐校准模块主要针对LLM对齐结果进行二次校对,解决的问题如下:

1) 一些LLM将概念与实体混淆的情况;

2) 与图谱中的实体、概念、属性、关系进行对齐匹配;

3) 实体名和概念名重复时,二者均进行召回等

(5) 解析及溯源模块

解析模块:

针对校准后的对齐结果,执行解析模块,解析模块会基于对齐结果进行判断,该执行如下哪种解析,候选的解析列表有:纯实体解析、纯概念解析、实体-属性解析、概念-属性解析、属性-属性值解析、属性-属性值-概念解析等。

(Ps: 候选解析列表是分析了大量数据之后,抽象出来的解析列表,常见的问答基本就涵盖在这些列表中)

每个解析模块会有不同的解析逻辑,例如:

1) 纯实体解析:会将查询hugegraph得到的实体作为背景知识提供给LLM,如介绍下霸王龙

2) 纯概念解析:会查询概念下有哪些实体,且仅列出实体名称作为背景知识提供给LLM,如恐龙都有哪些?

3) 实体-属性解析:会查询实体对应的属性或关系,并作为背景知识,如霸王龙有多重多高?

4) 概念-属性解析:会查询概念下实体的属性信息作为背景知识,如恐龙目下动物的体重分别是多少?

5) 属性-属性值解析:会查询属性对应属性值的信息,并作为背景知识,如肉食性的动物有?

溯源模块:主要功能就是从图谱中查询的结果,需要返回图谱对应的实体id、概念id、属性等

6) 问答模块

通过将解析后的背景知识以及用户的问题,经过问答prompt,然后调用LLM进行润色回答。

PS:

对齐prompt调用大模型是非流式输出,因为对齐结果不需要实时同步给用户;

问答prompt调用大模型是流式输出,因为问答结果需要实时同步给用户

3. 优缺点

(1) 优点

1) 整体架构简单,仅需要2个prompt,与LLM仅交互2次

2) 解析模块基于多数据集进行抽象,可覆盖多数查询场景

3) 针对未覆盖的场景,解析模块可支持快速扩展适配

4) 迁移新图谱时,业务只需要更改prompt即可,对业务相对友好

(2) 缺点

1) 首字响应时间主要耗时在对齐prompt与LLM的交互中,因为需要对齐完整输出结果

2) 概念、属性、实体对齐集中在1个prompt中,所以prompt的长度较长

4. 多轮问答实现

实现的思路如下:

1) 缓存历史问题以及缓存历史对齐的实体或概念,如可以缓存最近10轮的用户问题以及对齐结果

2) 针对指代消解、语义对齐prompt调优,且多轮问答的prompt也集成在对齐prompt中(因此,对齐prompt任务十分繁重)

具体示例如下(从对齐prompt截取了部分,第一次输入参考为空):

历史输入信息:

```

输入:盐都龙喜欢吃什么

参考:

输入:喜欢生活在什么地方

参考:盐都龙

输入:三角龙是植食还是肉食

参考:盐都龙

输入:有什么本事

参考:三角龙

输入:普尔塔龙多重

参考:三角龙

```

 

现在请回答:

输入: 吃什么

参考: 普尔塔龙

输出:

具体的效果可以查阅下面章节中的效果示例。

5. 效果

图谱三元组总量3000+,测试样例共计385条,其中单轮问答340条,多轮问答45条。

         (1) 单轮问答效果,准确率93%+

一阶问答

华阳龙的头骨化石是在哪里发现的

华阳龙的头骨化石是在中国四川省发现的。

判断问答

恐爪龙有4米长吗

恐爪龙的身长是3.5米左右,没有4米。

对比问答

三角龙和姜氏巴克龙谁更重

三角龙更重。

条件问答

化石在四川发现的恐龙有哪些

最大体型的长羽毛恐龙是二连巨盗龙。

组合问答

单爪龙身长体重多少?

单爪龙的身长是1~1.2米,体重约3.5千克。

         (2) 多轮问答效果,准确率93%+

1) 示例1:缺字情况

问:普尔塔多重

答:普尔塔龙的体重是75吨。

问:吃什么

答:普尔塔龙是植食性的

2) 示例2:错字情况

问:河堤列龙生活在什么地方

答:河堤猎龙生活在英国的怀特岛和奇尔顿岭。

问:它是什么时候的恐龙

答:河堤猎龙是早白垩世,巴雷姆期的恐龙。

3) 示例3:较困难的指代消解

问:三角龙是植食还是肉食

答:三角龙是植食性的。

问:有啥本事

答:三角龙的能力是快速奔跑。

问:和肿头龙比,谁更长一些?

答:三角龙的身长为8米,而肿头龙的身长为4~6米。因此,三角龙更长一些。

问:那它的体重是多少?

答:三角龙的体重是6.1~12吨。

6. 答疑解惑

(1) 候选实体、候选概念、候选属性如何动态加载至prompt?

解:prompt预留占位符,代码解析时进行格式化

(2) 概念、属性数量有限,可以全部写在prompt,但如果实体有1W个呢?

解:基于sim进行候选实体召回策略

(3) 如何实现流式输出?

解:基于tornado的websocket框架,结合异步框架asyncio以及python的yield、next等方法实现

(4) 非流式调用LLM出现网络不稳定导致超时,如何解决?

解:增加重试机制

(5) 对齐结果如何进一步保障?

解:增加对齐校准模块

(6) 如何减少频繁调用hugegraph

解:预先加载图谱至内存,然后使用python的lru_cache缓存机制

(7) 如何提高属性、概念、实体对齐的准确率,比如多字、缺字、相近字等?

解:对齐prompt增加要求以及few-shot

(8) 如何解决实体文字完全不一致,但指的同一个实体的情况,比如霸王龙和雷克斯暴龙?

解:通过图谱的别名维护,且当前别名与正式名地位相同

(9) 溯源是如何实现的?

解:在每个解析分支中,基于解析结果增加对应图谱的信息

(10) 如何实现最大、最小之类的查询,如体重最大的植食性恐龙是哪个?

解:对齐结果:(属性-等于-体重)且(属性值-等于-最大)且(概念-等于-恐龙)

解析逻辑:筛选恐龙概念下实体 -> 食性为植食性的实体 -> 其中体重最大的

(11) 如何实现关系的推理,比如鱼石螈演进关系的演进关系是?

解:原始图谱关系:鱼石螈 -> 演进关系 ->蜥螈 -> 演进关系 -> 异齿龙

对齐结果:(实体-等于-鱼石螈)且(属性-等于-演进关系);(属性-等于-演进关系)

答案:鱼石螈的演进关系是蜥螈,而蜥螈的演进关系是异齿龙。

(12) 为什么说解析模块便于快速扩展?

解:实体、概念、属性查询接口均封装为独立方法。

(13) 对比类、判断类的问题回答如何更加口语化?

解:问答prompt调优

(14) 如何快速定位问题?

解:增加debug机制,即接口调用时,debug机制会将每个阶段的处理结果均记录下来,并返回。

(15) 目前支持多少轮问答?

解:理论上支持N多轮,且N支持配置

(16) 如何提高指代消解的准确率?

解:对齐prompt增加历史的参考实体或概念

7. 遗留的问题

(1) 基于属性值查实体未实现,分析部分badcase,属于此类情况

(2) 路径查询未实现,因为当前图谱关系数量极少

8. 总结

一句话足矣~

本文主要是KBQA方案基于LLM实现,主要模块包括对齐、解析、润色、多轮问答等内容,而且基于业务测试集效果相对较好。

纯纯的干货篇!!

 


 

原创声明,禁止转载!

 

标签:实战,prompt,实体,KBQA,LLM,对齐,解析,属性
From: https://www.cnblogs.com/mengrennwpu/p/18128378

相关文章

  • filebeat实战
    1.打开filebeat支持nginx模块[root@es-node1/etc/filebeat]#lsfields.ymlfilebeat.reference.ymlfilebeat.ymlfilebeat.yml.bakmodules.d[root@es-node1/etc/filebeat]#lsmodules.d/[root@es-node1/etc/filebeat]#filebeatversionfilebeatversion7.9.1(amd......
  • 从零开始搭建云呼叫中心之FreeSwitch实战
    一.开篇在当今快速发展的数字化时代,企业对于高效率、低成本、可扩展性强的通信解决方案的需求日益增长。云呼叫中心作为一种新兴的服务模式,正逐渐取代传统的硬件呼叫中心。FreeSwitch,作为一款强大的开源通信平台,因其卓越的性能和灵活性而成为搭建云呼叫中心的理想选择。本文......
  • 自动化运维(十五)Ansible 实战之批量创建WEB服务器
        前面我们学习了一些Ansible模块的知识,从这一块篇开始我们进入到 Ansible实战内容的学习,我们会根据实际应用中的一些案例来演示这些模块的综合应用。现在我们有这么一个需求:在esxi虚拟机192.168.110.2上创建5台web服务器,web服务器配置为2核4G,50G硬盘,安装nginx服务......
  • Flutter实战 -- fl_chart(条形图)
    1-引入依赖fl_chart:^0.35.0#折线图2-条形图具体实现条形图代码:import'package:fl_chart/fl_chart.dart';import'package:flutter/material.dart';classMyHomePageextendsStatefulWidget{constMyHomePage({super.key,requiredthis.title});fina......
  • NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比
    NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]Text-to-SQL(或者Text2SQL),顾名思义就是把文本转化为SQL语言,更学术一点的定义是:把数据库领域下的自然语言(NaturalLanguage,NL)问题,转化为在关系型数据库中可以执行的......
  • OpenCV与AI深度学习 | 实战 | 使用OpenCV确定对象的方向(附源码)
    本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。原文链接:实战|使用OpenCV确定对象的方向(附源码)导读本文将介绍如何使用OpenCV确定对象的方向(即旋转角度,以度为单位)。 1先决条件   安装Python3.7或者更高版本。可以参考下文链接:    ......
  • 鸿蒙HarmonyOS实战-ArkUI组件(Popup)
    ......
  • 【Vue I18n 国际化插件】vue3+vue-i18n 项目实战总结
    一、为什么要国际化?前端国际化:应用要服务于不同的地区的用户,所以应用不能单一语言;应用要能让不同地区的人无障碍使用就需要实现国际化。目前在各大商城项目中,对于国际化语言的需求越来越高了,其中最多的就是vue项目使用i18n插件实现多语言切换功能。前端国际化:应用要......
  • 实战7_公众号爬取方式
    获取某公众号下面的所有文章一.分析公众号登录公众号首页-图文消息-超链接点开后再选择其他公众号并输入要搜索的公众号名,点击搜索出的公众号,下面便会显示公众号下的文章名二.获取链接两次请求1.获取公众号请求token值是变化的fakeid是下次请求要用到的数据2.获......
  • NLP简单项目实战——ChatBOT(二)
    二、Seq2Seq(一)Seq2Seq原理        Seq2seq模型中的encoder接收一个长度为M的序列,得到1个contextvector,之后decoder把这一个contextvector转化为长度为N的序列作为输出,从而构成一个MtoN的模型,能够处理很多不定长输入输出的问题(二)Seq2Seq实现    1.实现......