美国的圣塔菲研究所一直是复杂性研究的中心。1994年,约翰·霍兰德在圣菲研究所举办的吴拉姆纪念讲座中做了名为“隐秩序”的著名演进,而后,出版了《隐秩序—适应性造就复杂性》一书,提出了复杂适应系统。复杂适应系统被认为是“二十一世纪的新科学”,属于“第三代系统思想”,所提出的系统理论不仅完全颠覆了传统的研究范式,而且也有别于早期的系统思想。
一、复杂适应系统概述
复杂适应系统 Complex adaptive system (CAS)是一个复杂系统,它们基于动态的交互网络 Dynamic network analysis,而不是单个静态实体的简单聚合,也就是说,集合的行为不能通过每个组件的行为来进行预测。复杂适应系统具有适应性,因为个体和集体的行为会随着微观事件或事件集合的发生而进行变异或自组织。复杂适应系统可以看做是“相似且部分连接的微观结构”形成的“复杂宏观集合”,可以适应不断变化的环境,提高作为“宏观结构”的生存能力。
复杂适应系统是非线性动力系统的子集,其研究高度跨学科,融合了自然科学和社会科学的知识开发出了系统级的模型和见解,从而使得系统可以实现异质主体 Heterogeneous agents、相变 Phase transition 和涌现行为 Emergent behavior。在复杂适应系统中,系统的整体比其单独某个部分或部分之和都更加复杂、更有意义。
1.1 复杂适应系统
复杂适应系统或者称复杂性科学 Complexity science 这个术语,经常被用来描述围绕系统展开研究的相关学科领域。复杂性科学不是一个单一的理论——它包含不止一个理论框架,并且是高度跨学科的,目标是寻求一些关于生命的、可适应的、可变的系统的基本问题的答案。针对复杂适应系统的研究可以采用硬方法或软方法:硬方法理论使用精确的形式语言,倾向于认为主体本身具有有形的属性,并且通常认为行为系统中的主体可以以某种方式被控制;而软方法理论则使用自然语言和可能不精确的叙述,且主体是同时具有有形和无形属性。
硬复杂性理论包括复杂适应系统理论和生存理论,软复杂性理论的代表是生存系统理论 Viable System Theory。硬方法理论中的提出的许多命题内容也与软方法理论相关。下面的内容介绍将集中在复杂适应系统上。复杂适应系统的研究主要集中在系统的复杂性、涌现性和宏观特性上。约翰·霍兰德 John H. Holland指出复杂适应系统是由大量主体组成的系统,主体之间会相互影响,相互适应或学习。
复杂适应系统的典型例子包括:气候、城市、企业、市场、政府、工业、生态系统、社交网络、电网、动物群落、交通流、社会昆虫群体(例如:蚁群)等。除此之外,互联网和网络空间等由复杂的人机交互组成、协作和管理的网络系统也被视为复杂适应性系统。
1.2 CAS理论的7个基本点
适应性主体和CAS理论涉及到7个基本点,它们包括4个特性和3个机制。
(1)聚集:主要用于个体通过“粘合”形成较大的多个体的聚集体。由于个体具有聚集的特性,它们可以在一定条件下,在双方彼此接受时,组成一个新的个体——聚集体,在系统中象一个单独的个体那样行动。例如:股票市场中,有散户聚集形成的散户群,有大户聚集的大户群,有代表国家意志的主权基金,有代表不同群体的各种基金,在交易中象单独的个体行动。
(2)非线性:指个体以及它们的属性在发生变化时,并非遵从简单的线性关系。特别是在与系统的反复交互作用中,这一点更为明显。近代科学之所以在许多方面遇到困难,重要原因之一是它把自己的眼界局限于线性关系的狭窄范围内,从而无法描述和理解丰富多采的变化和发展。复杂适应系统理论认为个体之间相互影响不是简单的、被动的、单向的因果关系,而是主动的适应关系。以往的历史会留下痕迹,以往的经验会影响将来的行为。
复杂适应系统理论把非线性的产生归之于内因,归之于个体的主动性和适应能力。这就进一步把非线性理解为系统行为必然的、内在的要素,从而大大丰富和加深了对于非线性的理解。正因为如此,霍兰在提出具有适应性的主体这一概念时,特别强调其行为的非线性特征,并且认为这是复杂性产生的内在根源。复杂系统由大量粒子组成的系统,如果粒子间仅仅只有简单的线性作用,这样的系统并不复杂,它可以用统计的方式进行研究。仅仅包含很少几个元素或状态变量的系统,只要存在非线性作用,在一定条件下,就可能出现混沌,呈现相当复杂的现象。从这个意义上来说,非线性是复杂性之源。虽然,复杂性 ≠ 非线性;复杂性科学 ≠ 非线性科学,但复杂性中必然包含有非线性,对复杂系统的研究,肯定离不开非线性。对复杂性的进一步探索,也必然会促进非线性科学的进一步发展。例如:股市是非线性发展,充满了不确定性、混沌性、突变性和随机性。
(3)流:在个体与环境之间存在有能量和信息流,这些流的渠道是否通畅、周转迅速到什么程度,都直接影响系统的演化过程。例如:股市中信息流、资金流的高效程度决定了股市的演化进程。
(4)多样性:在适应过程中,由于种种原因,个体之间的差别会发展与扩大,最终形成分化,形成多样性。例如:股市里面充满了多样性,有老韭菜和新韭菜,还有割韭菜的,有韭菜培训班,还有忽悠韭菜的大师。
(5)标识:为了相互识别和选择,个体的标识在个体与环境的相互作用中是非常重要的,因而无论在建模中,还是实际系统中,标识的功能与效率也非常重要。例如:在股市里面,每个个体或群体都要标签,有大户、散户和机构投资者,便于相互作用中的识别。
(6)内部模型:在 CAS 中不同层次的个体都有预期未来的能力,每个个体都是有复杂的内部机制的。对于整个系统来说,这就统称为内部模型。例如:股市中每个投资者都有自己的分析模型,都有自己对股市预测的方法论。比如查理芒格的多元思维模型就是帮助巴菲特进行投资分析的内部模型。
(7)积木块:复杂系统常常是有简单积木组合而成的。复杂性往往不在于块的多少和大小,而在于原有积木块的重新组合。内部模型和积木的作用在于加强层次的概念。客观世界的多样性不仅表现在同一层次中个体类型的多种多样,还表现在层次之间的差别和多样性,当跨越层次时就会有新的规律与特征出现。把下一层次的内容和规律作为内部模型封装起来,作为一个整体参与上一个层次的竞争。例如:从散户到大户,再从大户到机构投资者,每一个层级需要的内部模型不同,所以升级需要不断的学习新的模型,象积木一样,建构自己的知识大厦。
通过上述七个基本特性的刻画,复杂适应系统模型可以看做是以内部模型为积木,通过标志进行聚集等相互作用并层层涌现出来的动态系统。
1.3 复杂适应系统的特点
复杂适应系统不同于一般复杂系统的特点,也是它吸引大量研究者进行研究的原因是:
(1)系统具有明显的层次性:各层之间界线分明;
(2) 层与层间具有相对的独立性:层与层之间的直接关联作用少,各层的个体主要是与同一层次的个体进行交互;
(3)个体具有智能性、适应性、主动性:系统中的个体可以自动调整自身的状态、参数以适应环境,或与其它个体进行合作或竞争,争取最大的生存机会或利益,这种自发的协作和竞争正是自然界生物“适者生存、不适者淘汰”的根源。这同时也反应出CAS是一个基于个体的、不断演化发展的演化系统,在这个演化过程中,个体的性能参数在变,个体的功能、属性在变,整个系统的功能、结构也产生了相应的变化;
(4)个体具有并发性:系统中的个体并行地对环境中的各种刺激作出反应,进行演化;
(5) 个体具有随机性。系统中的个体行为具有随机或突发性。
以上这些特点使得CAS具有了许多与其它系统不同的功能和特点。与复杂适应系统思考问题的独特思路相对应,复杂适应系统研究问题的方法与传统的方法也有不同之处。复杂适应系统建模方法的核心是通过在局部细节模型与全局模型(整体行为、突现现象)间的循环反馈和校正,来研究局部细节变化如何突现出整体的全局行为。它体现了一种自底向上的建模思想。
1.4 复杂适应系统的应用
复杂适应系统理论应用范围很广,可用在工程、生物、经济、管理、军事、政治、社会等各个方面,其中又在军事和经济上的应用为主要方向。
CAS在经济学中的应用
在经济学界,经济理论的验证一直是个难题。一般均衡理论认为各经济行为主件为实现自身目标最优化而相互作用,最终达到供求各方面力量平衡的特殊状态——均衡。在新古典经济的一般均衡理论描述中,市场在虚拟的拍卖、(看不见的手)的中央控制下,整个经济可达到一个均衡的价格。每一个人都是理性人。事实上是不现实的。因为没有哪个人或组织有能力拥有整个市场的所有信息,也没有谁具有确定合适市场价格的计算能力。这些都是传统经济学面临的困境。
CAS理论最先应用于经济领域是1987年Arthur与Holland等合作开发了一个模拟股票市场的计算机程序,圣塔菲人工证券市场, 以此来研究股票市场的泡沫增长或崩盘现象。他们的系统是由很多具有不同信念和期望的主体组成,这些主体依据市场的变化,通过归纳的方法不断地学习,从而修正或抛弃自己已有的信念和期望,这样个人的信念和期望对市场来说就成了内生变量,通过相互竞争,整个信念组成的生态式系统就随着时间而共同进化。
他们用一种基于心理或认知的观点来描述系统,如各种信念、预估、期望和解释,以及所有的基于这些信念和期望的决策、战略规划和行动等。运用这样一种观点来看待经济管理系统是很有帮助的,这是因为一切经济人的行动或选择,都是基于他们现在对未来的价格、竞争者未来的行动或者他们对世界未来特征的假设或信念,而当这些选择或假设累积起来后,反过来又会重新塑造价格、市场战略以及他们所面对的世界。这个系统的计算机试验结果解释了新古典经济学所不能解释的一些困惑。
比如股票市场中存在的技术性交易、市场心理学、流行效应、从众效应、过度反应效应等。
CAS理论在管理领域的应用
在当前的经济环境下,企业的生存与发展不仅取决于企业自身制定的战略,更取决于与其它企业和组织之间的作用关系以及相应的应变能力。因而, 适应性成为企业生存与发展的一个重要能力,企业如何增强其适应性能力已成为当前管理领域研究的热点。复杂性科学的发展,尤其是CAS理论的提出,正好满足了管理科学对这些问题研究的需要。现在管理科学发展的一个趋势,就是将企业管理作为一个复杂系统的管理来研究,利用复杂性科学尤其是CAS 理论的成果,探讨复杂环境条件下企业管理的原理与方法。这也使得CAS 理论在管理领域的应用具有广阔的前景。
二、复杂适应系统建模与仿真
复杂适应系统有时可以用基于主体的模型 Agent-based model 和基于复杂网络的模型 Complex network-based models 来建模。基于主体的模型主要是通过识别模型中的不同主体,利用各种方法和工具开发的。而开发复杂适应系统模型的另一种方法,则是利用复杂适应系统各组成部分的交互数据来构建复杂的网络模型。
2013年,SpringerOpen/BioMed Central 推出了一个开放的在线获取期刊平台,其主题就是关于复杂适应性系统建模(CASM)。美国圣塔菲研究所开发的一个模拟工具集——Swarm。Swarm平台可以支持研究者对复杂适应系统使用多主体模拟 Multi-Agent Simulation的方法来开展研究工作。Swarm是为复杂适应系统建立模型而设计的软件平台。1995年圣塔菲研究所发布了Swarm的beta版,此后,大约30个用户团体已经安装了Swarm并用它积极地开展建模工作,并完成了一定的工作。Swarm已经帮助提供了讨论模拟技术和方法论的焦点,还提供在特定的研究团体中模型组件和库的共享。
开发Swarm的目的就是通过科学家和软件工程师的合作制造一个高效率的、可信的、可复用的软件实验仪器,它能给予科学家们一个标准的软件工具集,就像提供了一个设备精良的软件实验室帮助人们集中精力于研究工作而非制造工具。Swarm实际上是一组用Objective-C语言写成的类库,这是一种面向对象的C语言。Swarm的建模思想就是让一系列独立的主体通过独立事件进行交互,帮助研究由多主体组成的复杂适应系统的行为。
三、 身边的复杂科学
复杂科学其实以及融入到很多科学中。控制论,生态学,社会学,气象学,机器学习,人工智能都在研究复杂性。
3.1 蚂蚁建桥
如果把
标签:复杂,CAS,复杂性,系统,个体,适应,系统论 From: https://www.cnblogs.com/haohai9309/p/16794238.html