首页 > 其他分享 >STM32CubeMX+MDK通过I2S接口进行音频输入输出(全双工读写一个DMA回调)

STM32CubeMX+MDK通过I2S接口进行音频输入输出(全双工读写一个DMA回调)

时间:2024-04-07 21:59:38浏览次数:25  
标签:MDK return addr DMA int I2S FIFO len fifo

一、前言

目前有一个关于通过STM32F411CEUx的I2S总线接口控制SSS1700芯片进行音频输入输出的研究。
SSS1700 是具有片上振荡器的 3S 高度集成的USB音频控制器芯片 。 SSS1700 功能支持96 KHz 24 位采样率,带外部音频编解码器(24 位/96KHz I2S 输入和输出)并具有内置立体声16/24位ADC、立体声16/24位DAC、耳机驱动、五段硬件均衡器、音频 PLL、USB 时钟振荡器和 USB FS 控制器加上 PHY。(实际个人认为使用基于蓝牙的音频控制芯片来结合STM32等单片机的方案可能更加方便一些,基于USB接口的耳机音响等基本已经退出舞台了,因此使用该类usb芯片个人不是很理解,但也有可能蓝牙被做它用,USB可以通过hub扩展,而蓝牙不容易扩展,具体原因暂时不得而知)
整体的逻辑比较简单:

  • 手机通过usb接口将音频数据传输给SSS1700音频芯片,该芯片提供I2S接口,我们MCU通过I2S接口读取该芯片中的音频数据达到录音的效果;
  • 如果手机没有放音时,我们MCU通过I2S接口向该音频芯片写入音频内容达到放音的效果。

待验证的扩展功能:

  • 音频芯片通过I2S接口读取音频数据的同时是否还可同时通过其它接口读取?
  • 手机通过usb接入音频芯片放音时我们是否可以通过I2S接口同步控制音频芯片放音?这个过程理论上芯片是被占用的,是否能像电脑音频混音播放还需要实验一下。

二、资料收集

官方i2s例子:https://www.stmcu.com.cn/Designresource/detail/LAT/710151
https://community.st.com/t5/stm32-mcus-products/pcm-sound-to-pc-gt-stm32f4-microphone/td-p/464908
https://www.st.com/en/embedded-software/stm32cubef4.html#get-software
参考官方HAL库的示例:en.stm32cubef4-v1-28-0\STM32Cube_FW_F4_V1.28.0\Projects\STM32F411E-Discovery\Applications\Audio\Audio_playback_and_record\Src\waveplayer.c
sss1700:https://www.bilibili.com/read/cv21981976/
i2s理解:https://blog.csdn.net/wholetus/article/details/109326191
音频及采样频率:https://zhuanlan.zhihu.com/p/101073274
ST-LINK及JLINK等:https://zhuanlan.zhihu.com/p/454940732
stm32 usb虚拟串口收发:https://blog.csdn.net/m0_60876665/article/details/122788442
i2s读取录音的重点参考:https://blog.csdn.net/weixin_44226356/article/details/125153210
i2s读取的数据发送上位机测试参考:https://www.cnblogs.com/pingwen/p/11794081.html
pcm、pdm:https://blog.csdn.net/u010783226/article/details/130850834
FATFS追加写入:https://blog.csdn.net/ba_wang_mao/article/details/109464436
缓存机制:https://www.cnblogs.com/puyu9499/p/15914090.html
DMA双缓存(比较常见的DMA缓存方式,但是个人更推荐上面缓存机制方式,代码改动小,好理解):https://blog.csdn.net/weixin_43336331/article/details/110481985
放音测试参考(测试i2s放音时可以接一个类似设备去听声音):https://blog.csdn.net/sudaroot/article/details/106834893
全双工参考(但是其没有使用DMA回调方式):https://blog.csdn.net/zwl1584671413/article/details/86650062
busy问题:https://blog.csdn.net/qq_42254853/article/details/130145214
全双工阻塞方式及异步回调方式使用启发:https://community.st.com/t5/stm32-mcus-products/stm32f411-hal-driver-i2s-full-duplex-ext-sd-issue/td-p/442735

三、I2S接口理解

1、基础概念

  • I2S(Inter-IC Sound)总线, 又称集成电路内置音频总线,是飞利浦半导体公司(现为恩智浦半导体公司)针对数字音频设备之间的音频数据传输而制定的一种总线标准。该总线专门用于音频设备之间的数据传输,广泛应用于各种多媒体系统。
  • 它为音频应用而设计,是一种电子的串行总线,用于连接电子音频设备。
  • 它传输的是PCM音频数据(即脉冲编码调制),PCM音频数据是未经压缩的音频采样数据裸流,它是由模拟信号经过采样、量化、编码转换成的标准数字音频数据。I2S是音频数字化后数据排列的一种格式。
  • 声音数字化过程:

  • 转为 PCM 格式三个参数:

声道数、采样位数和采样频率。

  • 采样频率:每秒钟取得声音样本的次数。采样频率越高,声音质量越好,还原越真实,但同时它占的资源比较多。
  • 采样位数:每个采样点用多少二进制位表示数据范围。量化位数越多,音质越好,数据量也越大。
  • 声道数:使用声音通道的个数,有单声道和立体声之分,立体声比单声道数据量翻倍。
  • 音频数据量=采样频率×量化位数×声道数/8(字节/秒)

由于PCM数据量比较大,所以一般应用过程中还会对PCM数据进行编码后传输,在播放时再解码(编解码会造成音质损失)。

2、信号线

I2S协议只定义三根信号线:时钟信号SCK、数据信号SD和左右声道选择信号WS。

  • 时钟信号 Serial Clock

SCK是模块内的同步信号,从模式时由外部提供,主模式时由模块内部自己产生。 不同厂家的芯片型号,时钟信号叫法可能不同,也可能称BCLK/Bit Clock或SCL/Serial Clock

  • 数据信号 Serial Data

**SD是串行数据,在I2S中以二进制补码的形式在数据线上传输。**在WS变化后的第一个SCK脉冲,先传输最高位(MSB, Most Significant Bit)。先传送MSB是因为发送设备和接收设备的字长可能不同,当系统字长比数据发送端字长长的时候,数据传输就会出现截断的现象/Truncated,即如果数据接收端接收的数据位比它规定的字长长的话,那么规定字长最低位(LSB: Least Significant Bit)以后的所有位将会被忽略。如果接收的字长比它规定的字长短,那么空余出来的位将会以0填补。通过这种方式可以使音频信号的最高有效位得到传输,从而保证最好的听觉效果。
√ 根据输入或输出特性,不同芯片上的SD也可能称SDATA、SDIN、SDOUT、DACDAT、ADCDAT等; √ 数据发送既可以同步于SCK的上升沿,也可以是下降沿,但接收设备在SCK的上升沿采样,发送数据时序需考虑

  • 左右声道选择信号 Word Select

WS是声道选择信号,表明数据发送端所选择的声道。 当:
√ WS=0,表示选择左声道 √ WS=1,表示选择右声道
WS也称帧时钟,即LRCLK/Left Right Clock。 WS频率等于声音的采样率。WS既可以在SCK的上升沿,也可以在SCK的下降沿变化。从设备在SCK的上升沿采样WS信号。数据信号MSB在WS改变后的第二个时钟(SCK)上升沿有效(即延迟一个SCK),这样可以让从设备有足够的时间以存储当前接收的数据,并准备好接收下一组数据。
另外,有时为使系统间更好地同步,还要传输一个主时钟(MCK),STM32F429x系列控制器固定输出为256* FS。

3、半/全双工及主/从模式

  • 支持全双工和半双工通信。(单工数据传输只支持数据在一个方向上传输;半双工数据传输允许数据在两个方向上传输,但是在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信;全双工数据通信允许数据同时在两个方向上传输,因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。
  • 支持主/从模式。(主模式:就是主CPU作为主机,向从机(挂载器件)发送接收数据。从模式:就是主CPU作为从机,接收和发送主机(挂载器件)数据。而主从机的分别其实是一个触发的作用,主机主动触发,从机只能被动响应触发。)

四、STM32CubeMX配置

1、配置RCC

根据开发板的晶振配置高速和低速时钟(查看原理图确认对应引脚是否已经配置了对应的晶振):
image.png

2、配置系统调试接口

我这里的板子为JTAG的SWD下载口
image.png

3、配置I2S

根据音频芯片及功能,这里暂时配置为全双工从模式,接收音频数据及发送音频数据,参数和音频芯片测试板配置的一致,不开启主时钟输出看一下是否存在干扰,如果干扰造成噪声等再开启主时钟试一下。
根据官方的说明:Transmission Mode: 传输模式。决定 SD 数据线传输方向(SD_Ext 方向相反)。所以如果设置了Transmit那么SD就是发送,SD_Ext就是接收,反之设置了Receive那么SD就是接收,SD_Ext就是发送。
这个对接线很有帮助,只是软件开发接口不关心,全双工时收发触发及回调都各自只需要一个接口。
Communication Standard: 传输标准。本文中采用 I2S Philips 标准(需要和音频芯片相同标准)。
Data and Frame Format: 数据位宽和帧位宽。如同“传输标准”的配置,保持与编解码器配置一致。
Selected Audio Frequency: 音频频率。可选频率 8KHz、11KHz、16KHz、22KHz、32KHz、44KHz、48KHz、96KHz、192KHz,这里选择 48KHz。如同“传输标准”的配置,保持与编解码器配置一致。
Clock polarity:时钟极性(非激活态时)。
image.png

4、配置I2S DMA

根据官网的I2S音频开发介绍,这里配置添加两个DMA,具体如下,推荐Half World,模式推荐循环模式,这样好配合非阻塞回调函数,正常模式更适合阻塞方式处理,但阻塞模式往往速度比较慢,高采样率时丢采样数据的情况比较多:
image.png

5、配置USB作为虚拟串口

我这里的STM32F411CEUx具备USB口,时钟配置好后USB也是可以配置的,这个usb口目前开发板是type-c的,不太好接U盘和SD卡了,所以用来配置作为一个虚拟串口和上位机通信(后续换了F407ZET6,HS的USB速度 更加快,外围接口较多,外挂U盘、SD卡、flash都可以拿来测试):
image.png

  • 配置USB DEVICE为虚拟串口:

image.png

6、增加一组串口2作为调试及外部交互用

默认配置即可:
image.png

7、时钟配置

时钟配置那里点击解决时钟问题就会自动配置了,不配置外部晶振时钟的话这里USB是没有办法使用的:
image.png
推荐的F4xx的i2s时钟配置(最后的音质调整具体进行了说明):

8、配置heap和stack

适当调高heap和stack,我们后面使用的fifo缓存使用malloc需要的heap较大。
image.png
之后生成代码即可。

五、MDK配置及程序

1、MDK配置

  • 1.用keil打开STM32F411的程序,结果提示下面的问题,就是没有安装固件库,会自动跳转去安装,这个方式往往下载不成功,我们去官网手动下载安装:

image.png

image.png

  • 3.然后搜索对应的芯片类型,比如我这个就是STM32F411CEUx

image.png
下载对应pack即可:
image.png

  • 4.安装对应下载的xxx.pack,并且目录直接默认是keil安装的目录。

image.png

  • 5.安装之后再次打开keil就不会报错了,可以看到已经安装的固件库

image.png

  • 6.JLINK+SW配置(也有可能是ST-LINK等,根据具体板子配置即可)

点击魔法棒,选择Debug,使用J-LINK/J-TRACE Cortex:
image.png
之后设置SW端口并scan即可:
image.png
然后就可以下载以及debug调试程序了。

2、代码

测试时逻辑比较简单,对于录音:电脑端播放音频通过usb口传给音频测试板,mcu通过I2S接口读取音频内容,再通过usb的模拟串口连接并发送到电脑,在电脑的串口工具中存储接收到的二进制数据存储到文件中,通过工具播放pcm数据。对于放音:将之前的pcm数据获取一部分写死到程序数组中,程序运行时就开始调用I2S接口写入音频芯片,然后在电脑端听声音。(实际使用时会通过外部flash存储音频数据,后续会简单总结spi flash读写)

2.1 转换16进制的hex为pcm并进行播放(可以不需要,直接通过写入原始字节数据到文件后导入播放器播放)
# -*- coding:utf-8 -*-
from scipy import signal
import numpy as np
import matplotlib.pyplot  as plt

import matplotlib
myfont = matplotlib.font_manager.FontProperties(fname='C:\\Windows\\Fonts\\cambria.ttc')

filename = r'data.pcm'
filepath = r'.'

f = open(filepath + '\\' + filename)
if 0:  # 这是ascii保存的数据格式
    line = f.read()
    data = [l.split(' ')[-1] for l in line.split('\n') if l]
    data = [int(x) for x in data]
else: # 这是HEX保存的数据格式
    line = f.read()[:-1]
    print("buffer count", len(line))
    data0 = np.array([int(x, base=16) for x in line.split(' ')])
    data_1 = data0[0:len(data0):2]
    data_2 = data0[1:len(data0):2]
    data3 = data_2 * 0x100 + data_1
# data = np.frombuffer(data3, dtype=np.int16)
data = data3.astype(np.int16)

filename2 = filename + "_ascii.pcm"
f=open(filepath + '\\' + filename2, 'w')
np.savetxt(f, data, fmt="%i", newline='\n')

import sounddevice as sd
fs = 16000
src = data
sd.play(1*src/np.max(src), fs, blocking=True)
2.2 python接收串口数据直接写入到文件(i2s接收的音频数据通过串口转发出来)
import serial


def bytes2Hex(argv):  # 十六进制显示 方法1
    try:
        result = ''
        hLen = len(argv)
        for i in range(hLen):
            hvol = argv[i]
            hhex = '%02x ' % hvol
            result += hhex
    except:
        pass
    return result


def read_com():
    portx = "COM23"
    bps = 12000000
    try:
        ser = serial.Serial(portx, bps)
        print("串口详情参数:", ser)
        with open("data.pcm", "wb") as binary_file:
            while ser.isOpen():
                data = ser.read(size=2)
                if data:
                    binary_file.write(data)
                    print(data)
            # num = ser.inWaiting()  # 查询串口接收字节数据,非阻塞
            # if num:
            #     line = ser.readline().decode()
                # line = ser.read(num)
                # content = bytes2Hex(line)
                # content = str(line)
                # content = str(line).strip('b').strip('\'')
                # f.write(line)
                # f.flush()
                # f.write(content)
                # print(line)
    except:
        pass
    finally:
        ser.close()
        binary_filef.close()


if __name__ == "__main__":
    read_com()

2.3 python读取文件内容通过串口发送给stm32
import serial


def send_com():
    portx = "COM28"
    bps = 115200
    try:
        ser = serial.Serial(portx, bps)
        print("串口详情参数:", ser)
        with open("data.pcm", "rb") as binary_file:
            while ser.is_open:
                print("serieal open success")
                data = binary_file.read(4)
                if not data: break
                print(data)
                ser.write(data)
    except:
        pass
    finally:
        ser.close()
        binary_file.close()


if __name__ == "__main__":
    send_com()

2.4 U盘状态判断(外挂U盘存储时使用)
printf("test...\n");
      HAL_Delay(1000);
    MX_USB_HOST_Process();
      HAL_Delay(1000);

    /* USER CODE BEGIN 3 */
      //判断USB是否进入准备状态APPLICATION_READY

      switch(Appli_state)
      {
          /**
            * The generated code from STM32CubeMX has two "confusing" application states
            * APPLICATION_START on HOST_USER_CONNECTION and APPLICATION_READY on HOST_USER_CLASS_ACTIVE.
            * Any FatFs commands should be executed after APPLICATION_STATE_READY is reached."
            */
          case APPLICATION_READY:
              printf("ready ok\n");
              MSC_Application();
              Appli_state = APPLICATION_IDLE;
              break;
          case APPLICATION_IDLE:
          default:
              break;
      }
2.5 FATFS文件操作(U盘读写文件时使用)
FATFS USBDISKFatFs;           /* File system object for USB disk logical drive */
FIL MyFile;                   /* File object */

extern ApplicationTypeDef Appli_state;

/**
  * @brief  Main routine for Mass Storage Class
  * @param  None
  * @retval None

  */
//下面函数操作USB 文件读写,可根据需要修改,函数名可自定义
void MSC_Application(void) {
    /* FatFs function common result code description: */
    /*  FR_OK = 0,                (0) Succeeded */
    /*  FR_DISK_ERR,              (1) A hard error occurred in the low level disk I/O layer */
    /*  FR_INT_ERR,               (2) Assertion failed */
    /*  FR_NOT_READY,             (3) The physical drive cannot work */
    /*  FR_NO_FILE,               (4) Could not find the file */
    /*  FR_NO_PATH,               (5) Could not find the path */
    /*  FR_INVALID_NAME,          (6) The path name format is invalid */
    /*  FR_DENIED,                (7) Access denied due to prohibited access or directory full */
    /*  FR_EXIST,                 (8) Access denied due to prohibited access */
    /*  FR_INVALID_OBJECT,        (9) The file/directory object is invalid */
    /*  FR_WRITE_PROTECTED,       (10) The physical drive is write protected */
    /*  FR_INVALID_DRIVE,         (11) The logical drive number is invalid */
    /*  FR_NOT_ENABLED,           (12) The volume has no work area */
    /*  FR_NO_FILESYSTEM,         (13) There is no valid FAT volume */
    /*  FR_MKFS_ABORTED,          (14) The f_mkfs() aborted due to any parameter error */
    /*  FR_TIMEOUT,               (15) Could not get a grant to access the volume within defined period */
    /*  FR_LOCKED,                (16) The operation is rejected according to thex file sharing policy */
    /*  FR_NOT_ENOUGH_CORE,       (17) LFN working buffer could not be allocated */
    /*  FR_TOO_MANY_OPEN_FILES,   (18) Number of open files > _FS_SHARE */
    /*  FR_INVALID_PARAMETER      (19) Given parameter is invalid */
    FRESULT res;                                          /* FatFs function common result code */
    uint32_t byteswritten, bytesread;                     /* File write/read counts */
    uint8_t wtext[] = "Hello Test USB!";                     /* File write buffer */
    uint8_t rtext[100];                                   /* File read buffer */

    /* Register the file system object to the FatFs module */
    res = f_mount(&USBDISKFatFs, (TCHAR const *) USBHPath, 0);
    if (res != FR_OK) {
        /* FatFs Initialization Error */
        USBH_UsrLog("f_mount error: %d", res);
        Error_Handler();
    }
    USBH_UsrLog("create the file in: %s", USBHPath);

    /* Create and Open a new text file object with write access */
    res = f_open(&MyFile, "USBHost.txt", FA_CREATE_ALWAYS | FA_WRITE);
    if (res != FR_OK) {
        /* 'hello.txt' file Open for write Error */
        USBH_UsrLog("f_open with write access error: %d", res);
        Error_Handler();
    }

    /* Write data to the text file */
    res = f_write(&MyFile, wtext, sizeof(wtext), (void *) &byteswritten);
    if ((byteswritten == 0) || (res != FR_OK)) {
        /* 'hello.txt' file Write or EOF Error */
        USBH_UsrLog("file write or EOF error: %d", res);
        Error_Handler();
    }

    /* Close the open text file */
    f_close(&MyFile);

    /* Open the text file object with read access */
    res = f_open(&MyFile, "USBHost.txt", FA_READ);
    if (res != FR_OK) {
        /* 'hello.txt' file Open for read Error */
        USBH_UsrLog("f_open with read access error: %d", res);
        Error_Handler();
    }

    /* Read data from the text file */
    res = f_read(&MyFile, rtext, sizeof(rtext), (void *) &bytesread);
    if ((bytesread == 0) || (res != FR_OK)) {
        /* 'hello.txt' file Read or EOF Error */
        USBH_UsrLog("f_read error: %d", res);
        Error_Handler();
    }

    /* Close the open text file */
    f_close(&MyFile);

    /* Compare read data with the expected data */
    if ((bytesread != byteswritten)) {
        /* Read data is different from the expected data */
        USBH_UsrLog("file doesn't match");
        Error_Handler();
    }

    /* Success of the demo: no error occurrence */
    USBH_UsrLog("USBHost.txt was created into the disk");

    /* Unlink the USB disk I/O driver */
    FATFS_UnLinkDriver(USBHPath);
}

uint16_t dma[4] = {0};
uint8_t is_ready = 0;

void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
    if(hi2s==&hi2s2){
        if (dma[0] || dma[1]) {
            if (is_ready) {
                FRESULT res;                                          /* FatFs function common result code */
                /* Create and Open a new text file object with write access */
                res = f_open(&MyFile, "data.pcm", FA_OPEN_EXISTING | FA_WRITE);
                if (res != FR_OK) {
                    /* 'hello.txt' file Open for write Error */
                    USBH_UsrLog("f_open with write access error: %d", res);
                    Error_Handler();
                }

                /* 查找文件的结尾 */
                res = f_lseek(&MyFile, f_size(&MyFile));

                /* Write data to the text file */
                uint32_t byteswritten;
                printf("%02x%02x", dma[0], dma[1]);
                res = f_write(&MyFile, (uint8_t *) &dma, 2, (void *) &byteswritten);
                if ((byteswritten == 0) || (res != FR_OK)) {
                    USBH_UsrLog("file write or EOF error: %d", res);
                    Error_Handler();
                }

                f_close(&MyFile);
            }
        }
    }
}
switch (Appli_state) {
            /**
              * The generated code from STM32CubeMX has two "confusing" application states
              * APPLICATION_START on HOST_USER_CONNECTION and APPLICATION_READY on HOST_USER_CLASS_ACTIVE.
              * Any FatFs commands should be executed after APPLICATION_STATE_READY is reached."
              */
            case APPLICATION_READY:
                printf("ready ok\n");
//                MSC_Application();
                FRESULT res;                                          /* FatFs function common result code */

                /* Register the file system object to the FatFs module */
                res = f_mount(&USBDISKFatFs, (TCHAR const *) USBHPath, 0);
                if (res != FR_OK) {
                    /* FatFs Initialization Error */
                    USBH_UsrLog("f_mount error: %d", res);
                    Error_Handler();
                }
                USBH_UsrLog("create the file in: %s", USBHPath);

                /* Create and Open a new text file object with write access */
                res = f_open(&MyFile, "data.pcm", FA_CREATE_ALWAYS | FA_WRITE);
                if (res != FR_OK) {
                    /* 'hello.txt' file Open for write Error */
                    USBH_UsrLog("f_open with write access error: %d", res);
                    Error_Handler();
                }

                f_close(&MyFile);

                HAL_I2S_Receive_DMA(&hi2s2, dma, sizeof(dma));

                Appli_state = APPLICATION_IDLE;
                is_ready = 1;
                break;
            case APPLICATION_IDLE:
                break;
            case APPLICATION_DISCONNECT:
                FATFS_UnLinkDriver(USBHPath);
                is_ready = 0;
                Appli_state = APPLICATION_IDLE;
                break;
            default:
                break;
        }
2.6 fifo缓存实现(解决i2s dma读写和存储读写时速度不对等问题)
//******************************************************************************************
//!
//! \file   FIFO.h
//! \brief  Genernal FIFO Model Interface.
//!         You can use uniform FIFO Model to manager Any type of data element.
//! \author cedar
//! \changed damom.li
//! \changed sky.huang
//! \date   2016-11-03
//! \email  [email protected]
//!
//! \version: 1.1 add fifo_s_gets_noprotect function
//!
//! Copyright (c) 2013 Cedar MIT License
//!
//! Permission is hereby granted, free of charge, to any person obtaining a copy
//! of this software and associated documentation files (the "Software"), to deal
//! in the Software without restriction, including without limitation the rights to
//! use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
//! the Software, and to permit persons to whom the Software is furnished to do so,
//! subject to the following conditions:
//!
//! The above copyright notice and this permission notice shall be included in all
//! copies or substantial portions of the Software.
//!
//! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
//! IN THE SOFTWARE.
///
//******************************************************************************************
#ifndef __FIFO_H__
#define __FIFO_H__
#ifdef __cplusplus
"C"
{
#endif

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>

#define MUTEX_DECLARE(mutex) unsigned long mutex
#define MUTEX_INIT(mutex)    do{mutex = 0;}while(0)
#define MUTEX_LOCK(mutex)    do{__disable_irq();}while(0)
#define MUTEX_UNLOCK(mutex)  do{__enable_irq();}while(0)

    //******************************************************************************************
    //!                           CONFIGURE MACRO
    //******************************************************************************************

#define FIFO_NDEBUG
#define USE_DYNAMIC_MEMORY //!< Use system malloc/free function

    //******************************************************************************************
    //!                     Macro Function
    //******************************************************************************************

    //******************************************************************************************
    //!                           PUBLIC TYPE
    //******************************************************************************************

    //! FIFO Memory Model (Single Byte Mode)
    typedef struct
    {
        char *p_start_addr; //!< FIFO Memory Pool Start Address
        char *p_end_addr;   //!< FIFO Memory Pool End Address
        int free_num;       //!< The remain capacity of FIFO
        int used_num;       //!< The number of elements in FIFO
        char *p_read_addr;  //!< FIFO Data Read Index Pointer
        char *p_write_addr; //!< FIFO Data Write Index Pointer
        MUTEX_DECLARE(mutex);
    } fifo_s_t;

    //! FIFO Memory Model
    typedef struct
    {
        char *p_start_addr; //!< FIFO Memory Pool Start Address
        char *p_end_addr;   //!< FIFO Memory Pool End Address
        int free_num;       //!< The remain capacity of FIFO
        int used_num;       //!< The number of elements in FIFO
        int unit_size;      //!< FIFO Element Size(Unit: Byte)
        char *p_read_addr;  //!< FIFO Data Read Index Pointer
        char *p_write_addr; //!< FIFO Data Write Index Pointer
        MUTEX_DECLARE(mutex);
    } fifo_t;

    //******************************************************************************************
    //!                           PUBLIC API
    //******************************************************************************************

#ifdef USE_DYNAMIC_MEMORY

    //******************************************************************************************
    //
    //! \brief  Create An New FIFO Instance(in Single Mode).
    //! This function allocate enought room for N blocks fifo elements, then return the pointer
    //! of FIFO.
    //!
    //! \param  [in] uint_cnt is count of fifo elements.
    //! \retval The Pointer of FIFO instance, return NULL is failure to allocate memory.
    //!
    //! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
    //!            Header file before use this function.
    //! \note   -# Functions FIFO_Create and FIFO_Destory must be used in pairs.
    //!
    //******************************************************************************************
    fifo_s_t *fifo_s_create(int uint_cnt);

    //******************************************************************************************
    //
    //! \brief  Destory FIFO Instance(in Single Mode).
    //!  This function release memory, then reinit the FIFO struct.
    //!
    //! \param  [in] p_fifo is the pointer of FIFO instance
    //! \retval None.
    //!
    //! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
    //!            Header file before use this function.
    //
    //******************************************************************************************
    void fifo_s_destroy(fifo_s_t *p_fifo);

#endif // USE_DYNAMIC_MEMORY

    //******************************************************************************************
    //
    //! \brief  Initialize an static FIFO struct(in single mode).
    //!
    //! \param  [in] p_fifo is the pointer of valid FIFO instance.
    //! \param  [in] p_base_addr is the base address of pre-allocate memory, such as array.
    //! \param  [in] uint_cnt is count of fifo elements.
    //! \retval 0 if initialize successfully, otherwise return -1.
    //
    //******************************************************************************************
    int fifo_s_init(fifo_s_t *p_fifo, void *p_base_addr, int uint_cnt);

    //******************************************************************************************
    //
    //! \brief  Put an element into FIFO(in single mode).
    //!
    //! \param  [in]  p_fifo is the pointer of valid FIFO.
    //! \param  [in]  element is the data element you want to put
    //!
    //! \retval 0 if operate successfully, otherwise return -1.
    //
    //******************************************************************************************
    int fifo_s_put(fifo_s_t *p_fifo, char element);

    int fifo_s_puts(fifo_s_t *p_fifo, char *p_source, int len);
    int fifo_s_puts_noprotect(fifo_s_t *p_fifo, char *p_source, int len);

    //******************************************************************************************
    //
    //! \brief  Get an element from FIFO(in single mode).
    //!
    //! \param  [in]  p_fifo is the pointer of valid FIFO.
    //!
    //! \retval the data element of FIFO.
    //
    //******************************************************************************************
    char fifo_s_get(fifo_s_t *p_fifo);
    int fifo_s_gets(fifo_s_t *p_fifo, char *p_dest, int len);
    int fifo_s_gets_noprotect(fifo_s_t *p_fifo, char *p_dest, int len);

    //******************************************************************************************
    //
    //! \brief  Pre-Read an element from FIFO(in single mode).
    //!
    //! \param  [in]  p_fifo is the pointer of valid FIFO.
    //! \param  [in]  Offset is the offset from current pointer.
    //!
    //! \retval the data element of FIFO.
    //
    //******************************************************************************************
    char fifo_s_preread(fifo_s_t *p_fifo, int offset);
    int fifo_s_prereads(fifo_s_t *p_fifo, char *p_dest, int offset, int len);

    //******************************************************************************************
    //
    //! \brief  FIFO is empty (in single mode)?
    //!
    //! \param  [in] p_fifo is the pointer of valid FIFO.
    //!
    //! \retval - None-zero(true) if empty.
    //!         - Zero(false) if not empty.
    //
    //******************************************************************************************
    char fifo_s_isempty(fifo_s_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  FIFO is full (in single mode)?
    //!
    //! \param  [in] p_fifo is the pointer of valid FIFO.
    //!
    //! \retval - None-zero(true) if full.
    //!         - Zero(false) if not full.
    //
    //******************************************************************************************
    char fifo_s_isfull(fifo_s_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  Get FIFO the number of elements(in single mode)?
    //!
    //! \param  [in] p_fifo is the pointer of valid FIFO.
    //!
    //! \retval The number of elements in FIFO.
    //
    //******************************************************************************************
    int fifo_s_used(fifo_s_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  Get FIFO the number of elements(in single mode)?
    //!
    //! \param  [in] p_fifo is the pointer of valid FIFO.
    //!
    //! \retval The number of elements in FIFO.
    //
    //******************************************************************************************
    int fifo_s_free(fifo_s_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  Flush the content of FIFO.
    //!
    //! \param  [in] p_fifo is the pointer of valid FIFO.
    //!
    //! \retval 0 if success, -1 if failure.
    //
    //******************************************************************************************
    void fifo_s_flush(fifo_s_t *p_fifo);
    int fifo_s_discard(fifo_s_t *p_fifo, int len);

    //******************************************************************************************
    //
    //! \brief  Create An New FIFO Instance.
    //! This function allocate enought room for N blocks fifo elements, then return the pointer
    //! of FIFO.
    //!
    //! \param  [in] UnitSize is fifo element size.
    //! \param  [in] UnitCnt is count of fifo elements.
    //! \retval The Pointer of FIFO instance, return NULL is failure to allocate memory.
    //!
    //! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
    //!            Header file before use this function.
    //! \note   -# Functions FIFO_Create and FIFO_Destory must be used in pairs.
    //!
    //******************************************************************************************
    fifo_t *fifo_create(char unit_size, int unit_cnt);

    //******************************************************************************************
    //
    //! \brief  Destory FIFO Instance.
    //!  This function release memory, then reinit the FIFO struct.
    //!
    //! \param  [in] pFIFO is the pointer of FIFO instance
    //! \retval None.
    //!
    //! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
    //!            Header file before use this function.
    //
    //******************************************************************************************
    void fifo_destory(fifo_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  Initialize an static FIFO struct.
    //!
    //! \param  [in] pFIFO is the pointer of valid FIFO instance.
    //! \param  [in] pBaseAddr is the base address of pre-allocate memory, such as array.
    //! \param  [in] UnitSize is fifo element size.
    //! \param  [in] UnitCnt is count of fifo elements.
    //! \retval 0 if initialize successfully, otherwise return -1.
    //
    //******************************************************************************************
    int fifo_init(fifo_t *p_fifo, void *p_base_addr, char unit_size, int unit_cnt);

    //******************************************************************************************
    //
    //! \brief  Put an element into FIFO.
    //!
    //! \param  [in]  pFIFO is the pointer of valid FIFO.
    //! \param  [in]  pElement is the address of element you want to put
    //!
    //! \retval 0 if operate successfully, otherwise return -1.
    //
    //******************************************************************************************
    int fifo_put(fifo_t *p_fifo, void *p_element);
    int fifo_put_noprotect(fifo_t *p_fifo, void *p_element);
    //******************************************************************************************
    //
    //! \brief  Get an element from FIFO.
    //!
    //! \param  [in]  pFIFO is the pointer of valid FIFO.
    //! \param  [out] pElement is the address of element you want to get
    //!
    //! \retval 0 if operate successfully, otherwise return -1.
    //
    //******************************************************************************************
    int fifo_get(fifo_t *p_fifo, void *p_element);
    int fifo_get_noprotect(fifo_t *p_fifo, void *p_element);

    //******************************************************************************************
    //
    //! \brief  Pre-Read an element from FIFO.
    //!
    //! \param  [in]  pFIFO is the pointer of valid FIFO.
    //! \param  [in]  Offset is the offset from current pointer.
    //! \param  [out] pElement is the address of element you want to get
    //!
    //! \retval 0 if operate successfully, otherwise return -1.
    //
    //******************************************************************************************
    int fifo_pre_read(fifo_t *p_fifo, char offset, void *p_element);

    //******************************************************************************************
    //
    //! \brief  FIFO is empty ?
    //!
    //! \param  [in] pFIFO is the pointer of valid FIFO.
    //!
    //! \retval - None-zero(true) if empty.
    //!         - Zero(false) if not empty.
    //
    //******************************************************************************************
    int fifo_is_empty(fifo_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  FIFO is full ?
    //!
    //! \param  [in] pFIFO is the pointer of valid FIFO.
    //!
    //! \retval - None-zero(true) if full.
    //!         - Zero(false) if not full.
    //
    //******************************************************************************************
    int fifo_is_full(fifo_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  Get FIFO the number of elements?
    //!
    //! \param  [in] pFIFO is the pointer of valid FIFO.
    //!
    //! \retval The number of elements in FIFO.
    //
    //******************************************************************************************
    int fifo_used(fifo_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  Get FIFO the number of elements?
    //!
    //! \param  [in] pFIFO is the pointer of valid FIFO.
    //!
    //! \retval The number of elements in FIFO.
    //
    //******************************************************************************************
    int fifo_free(fifo_t *p_fifo);

    //******************************************************************************************
    //
    //! \brief  Flush the content of FIFO.
    //!
    //! \param  [in] pFIFO is the pointer of valid FIFO.
    //!
    //! \retval 0 if success, -1 if failure.
    //
    //******************************************************************************************
    int fifo_flush(fifo_t *p_fifo);

#ifdef __cplusplus
}
#endif

#endif // __FIFO_H__

//******************************************************************************************
//!
//! \file   FIFO.c
//! \brief  Genernal FIFO Model Interface.
//!         You can use uniform FIFO Model to manager Any type of data element.
//! \author cedar
//! \changed damom.li
//! \changed sky.huang
//! \date   2016-11-03//! \date   2013-12-16
//! \email  [email protected]
//!
//! \version: 1.1 add fifo_s_gets_noprotect function
//!
//! Copyright (c) 2013 Cedar MIT License
//!
//! Permission is hereby granted, free of charge, to any person obtaining a copy
//! of this software and associated documentation files (the "Software"), to deal
//! in the Software without restriction, including without limitation the rights to
//! use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
//! the Software, and to permit persons to whom the Software is furnished to do so,
//! subject to the following conditions:
//!
//! The above copyright notice and this permission notice shall be included in all
//! copies or substantial portions of the Software.
//!
//! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
//! IN THE SOFTWARE.
///
//******************************************************************************************
#include "fifo.h"

//******************************************************************************************
//!                     ASSERT MACRO
//******************************************************************************************
#ifndef ASSERT

#ifdef FIFO_NDEBUG
#define ASSERT(x)
#else
#define ASSERT(x)                                           \
    do                                                      \
    {                                                       \
        if (!(x))                                           \
            printf("[assert]: %s, %d", __FILE__, __LINE__); \
        while (!(x))                                        \
            ;                                               \
    } while (0)
#endif

#endif // ASSERT

#ifdef USE_DYNAMIC_MEMORY
//******************************************************************************************
//
//! \brief  Create An New FIFO Instance(in Single Mode).
//! This function allocate enought room for N blocks fifo elements, then return the pointer
//! of FIFO.
//!
//! \param  [in] uint_cnt is count of fifo elements.
//! \retval The Pointer of FIFO instance, return NULL is failure to allocate memory.
//!
//! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
//!            Header file before use this function.
//! \note   -# Functions FIFO_Create and FIFO_Destory must be used in pairs.
//!
//******************************************************************************************
fifo_s_t *fifo_s_create(int uint_cnt)
{
    fifo_s_t *p_fifo = NULL;  //!< FIFO Pointer
    char *p_base_addr = NULL; //!< Memory Base Address

    //! Check input parameters.
    ASSERT(uint_cnt);

    //! Allocate Memory for pointer of new FIFO Control Block
    p_fifo = (fifo_s_t *)malloc(sizeof(fifo_s_t));
    if (NULL == p_fifo)
    {
        //! Allocate Failure, exit now
        return (NULL);
    }
    //! Allocate Memory for pointer of new FIFO
    p_base_addr = malloc(uint_cnt);
    if (NULL == p_base_addr)
    {
        //! Allocate Failure, exit now
        free(p_fifo);
        return (NULL);
    }
    //! Initialize General FIFO Module
    fifo_s_init(p_fifo, p_base_addr, uint_cnt);

    return (p_fifo);
}

//******************************************************************************************
//
//! \brief  Destory FIFO Instance(in Single Mode).
//!  This function release memory, then reinit the FIFO struct.
//!
//! \param  [in] p_fifo is the pointer of FIFO instance
//! \retval None.
//!
//! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
//!            Header file before use this function.
//
//******************************************************************************************
void fifo_s_destroy(fifo_s_t *p_fifo)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_fifo->p_start_addr);

    //! Free FIFO memory
    free(p_fifo->p_start_addr);
    //! Free FIFO Control Block memory
    free(p_fifo);

    return; //!< Success
}

#endif // USE_DYNAMIC_MEMORY

//******************************************************************************************
//
//! \brief  Initialize an static FIFO struct(in single mode).
//!
//! \param  [in] p_fifo is the pointer of valid FIFO instance.
//! \param  [in] p_base_addr is the base address of pre-allocate memory, such as array.
//! \param  [in] uint_cnt is count of fifo elements.
//! \retval 0 if initialize successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_s_init(fifo_s_t *p_fifo, void *p_base_addr, int uint_cnt)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_base_addr);
    ASSERT(uint_cnt);

    //! Initialize FIFO Control Block.
    p_fifo->p_start_addr = (char *)p_base_addr;
    p_fifo->p_end_addr = (char *)p_base_addr + uint_cnt - 1;
    p_fifo->free_num = uint_cnt;
    p_fifo->used_num = 0;
    p_fifo->p_read_addr = (char *)p_base_addr;
    p_fifo->p_write_addr = (char *)p_base_addr;

    //! Inint mutex for new FIFO
    MUTEX_INIT(p_fifo->mutex);

    return (0);
}

//******************************************************************************************
//
//! \brief  Put an element into FIFO(in single mode).
//!
//! \param  [in]  p_fifo is the pointer of valid FIFO.
//! \param  [in]  element is the data element you want to put
//!
//! \retval 0 if operate successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_s_put(fifo_s_t *p_fifo, char element)
{
    //! Check input parameters.
    ASSERT(p_fifo);

    if (0 == p_fifo->free_num)
    {
        //! Error, FIFO is full!
        return (-1);
    }

    MUTEX_LOCK(p_fifo->mutex);

    if (0 == p_fifo->free_num)
    {
        //! Error, FIFO is full!
        MUTEX_UNLOCK(p_fifo->mutex);
        return (-1);
    }

    if (p_fifo->p_write_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_write_addr = p_fifo->p_start_addr;
    }

    *(p_fifo->p_write_addr) = element;
    p_fifo->p_write_addr++;
    p_fifo->free_num--;
    p_fifo->used_num++;
    MUTEX_UNLOCK(p_fifo->mutex);

    return (0);
}

//******************************************************************************************
//
//! \brief  Put some elements into FIFO(in single mode).
//!
//! \param  [in]  p_fifo is the pointer of valid FIFO.
//! \param  [in]  p_source is the data element you want to put
//! \param  [in]  the number of elements
//! \retval the number of really write data, otherwise return -1.
//
//******************************************************************************************
int fifo_s_puts(fifo_s_t *p_fifo, char *p_source, int len)
{
    int retval;
    int len_to_end;
    int len_from_start;

    ASSERT(p_fifo);

    if (NULL == p_source)
    {
        return -1;
    }

    if (0 == p_fifo->free_num)
    {
        return 0;
    }

    MUTEX_LOCK(p_fifo->mutex);

    if (0 == p_fifo->free_num)
    {
        MUTEX_UNLOCK(p_fifo->mutex);
        return 0;
    }

    if (p_fifo->p_write_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_write_addr = p_fifo->p_start_addr;
    }

    len = (len < p_fifo->free_num) ? len : p_fifo->free_num;
    len_to_end = p_fifo->p_end_addr - p_fifo->p_write_addr + 1;

    if (len_to_end >= len) //no rollback
    {
        len_to_end = len;
        memcpy(p_fifo->p_write_addr, p_source, len_to_end);
        p_fifo->p_write_addr += len_to_end;
    }
    else //rollback
    {
        len_from_start = len - len_to_end;
        memcpy(p_fifo->p_write_addr, p_source, len_to_end);
        memcpy(p_fifo->p_start_addr, p_source + len_to_end, len_from_start);
        p_fifo->p_write_addr = p_fifo->p_start_addr + len_from_start;
    }

    p_fifo->free_num -= len;
    p_fifo->used_num += len;
    retval = len;
    MUTEX_UNLOCK(p_fifo->mutex);

    return retval;
}

//******************************************************************************************
//
//! \brief  Put some elements into FIFO, ingnore the interrupt
//!
//! \param  [in]  p_fifo is the pointer of valid FIFO.
//! \param  [in]  p_source is the data element you want to put
//! \param  [in]  the number of elements
//! \retval the number of really write data, otherwise return -1.
//
//******************************************************************************************
int fifo_s_puts_noprotect(fifo_s_t *p_fifo, char *p_source, int len)
{
    int retval;
    int len_to_end;
    int len_from_start;

    ASSERT(p_fifo);

    if (NULL == p_source)
    {
        return -1;
    }

    if (0 == p_fifo->free_num)
    {
        return 0;
    }

    if (p_fifo->p_write_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_write_addr = p_fifo->p_start_addr;
    }

    len = (len < p_fifo->free_num) ? len : p_fifo->free_num;
    len_to_end = p_fifo->p_end_addr - p_fifo->p_write_addr + 1;

    if (len_to_end >= len) //no rollback
    {
        len_to_end = len;
        memcpy(p_fifo->p_write_addr, p_source, len_to_end);
        p_fifo->p_write_addr += len_to_end;
    }
    else //rollback
    {
        len_from_start = len - len_to_end;
        memcpy(p_fifo->p_write_addr, p_source, len_to_end);
        memcpy(p_fifo->p_start_addr, p_source + len_to_end, len_from_start);
        p_fifo->p_write_addr = p_fifo->p_start_addr + len_from_start;
    }

    p_fifo->free_num -= len;
    p_fifo->used_num += len;
    retval = len;

    return retval;
}

//******************************************************************************************
//
//! \brief  Get an element from FIFO(in single mode).
//!
//! \param  [in]  p_fifo is the pointer of valid FIFO.
//!
//! \retval the data element of FIFO.
//
//******************************************************************************************
char fifo_s_get(fifo_s_t *p_fifo)
{
    char retval = 0;

    //! Check input parameters.
    ASSERT(p_fifo);

    //TODO:
    if (0 == p_fifo->used_num)
    {
        return 0;
    }

    MUTEX_LOCK(p_fifo->mutex);

    if (0 == p_fifo->used_num)
    {
        MUTEX_UNLOCK(p_fifo->mutex);
        return 0;
    }

    if (p_fifo->p_read_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_read_addr = p_fifo->p_start_addr;
    }

    retval = *p_fifo->p_read_addr;
    // Update information
    p_fifo->p_read_addr++;
    p_fifo->free_num++;
    p_fifo->used_num--;
    MUTEX_UNLOCK(p_fifo->mutex);

    return (retval);
}

//******************************************************************************************
//
//! \brief  Get some element from FIFO(in single mode).
//!
//! \param  [in]  p_fifo is the pointer of valid FIFO.
//!
//! \retval the number of really read data.
//
//******************************************************************************************
int fifo_s_gets(fifo_s_t *p_fifo, char *p_dest, int len)
{
    int retval;
    int len_to_end;
    int len_from_start;

    ASSERT(p_fifo);

    if (NULL == p_dest)
    {
        return -1;
    }

    if (0 == p_fifo->used_num)
    {
        return 0;
    }

    MUTEX_LOCK(p_fifo->mutex);

    if (0 == p_fifo->used_num)
    {
        MUTEX_UNLOCK(p_fifo->mutex);
        return 0;
    }

    if (p_fifo->p_read_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_read_addr = p_fifo->p_start_addr;
    }

    len = (len < p_fifo->used_num) ? len : p_fifo->used_num;
    len_to_end = p_fifo->p_end_addr - p_fifo->p_read_addr + 1;

    if (len_to_end >= len) //no rollback
    {
        len_to_end = len;
        memcpy(p_dest, p_fifo->p_read_addr, len_to_end);
        p_fifo->p_read_addr += len_to_end;
    }
    else //rollback
    {
        len_from_start = len - len_to_end;
        memcpy(p_dest, p_fifo->p_read_addr, len_to_end);
        memcpy(p_dest + len_to_end, p_fifo->p_start_addr, len_from_start);
        p_fifo->p_read_addr = p_fifo->p_start_addr + len_from_start;
    }

    p_fifo->free_num += len;
    p_fifo->used_num -= len;
    retval = len;
    MUTEX_UNLOCK(p_fifo->mutex);

    return retval;
}

//******************************************************************************************
//
//! \brief  Get some element from FIFO(in single mode).
//!
//! \param  [in]  p_fifo is the pointer of valid FIFO.
//!
//! \retval the number of really read data.
//
//******************************************************************************************
int fifo_s_gets_noprotect(fifo_s_t *p_fifo, char *p_dest, int len)
{
    int retval;
    int len_to_end;
    int len_from_start;

    ASSERT(p_fifo);

    if (NULL == p_dest)
    {
        return -1;
    }

    if (0 == p_fifo->used_num)
    {
        return 0;
    }

    if (p_fifo->p_read_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_read_addr = p_fifo->p_start_addr;
    }

    len = (len < p_fifo->used_num) ? len : p_fifo->used_num;
    len_to_end = p_fifo->p_end_addr - p_fifo->p_read_addr + 1;

    if (len_to_end >= len) //no rollback
    {
        len_to_end = len;
        memcpy(p_dest, p_fifo->p_read_addr, len_to_end);
        p_fifo->p_read_addr += len_to_end;
    }
    else //rollback
    {
        len_from_start = len - len_to_end;
        memcpy(p_dest, p_fifo->p_read_addr, len_to_end);
        memcpy(p_dest + len_to_end, p_fifo->p_start_addr, len_from_start);
        p_fifo->p_read_addr = p_fifo->p_start_addr + len_from_start;
    }

    p_fifo->free_num += len;
    p_fifo->used_num -= len;
    retval = len;

    return retval;
}

//******************************************************************************************
//
//! \brief  Pre-Read an element from FIFO(in single mode).
//!
//! \param  [in]  p_fifo is the pointer of valid FIFO.
//! \param  [in]  Offset is the offset from current pointer.
//!
//! \retval the data element of FIFO.
//
//******************************************************************************************
char fifo_s_preread(fifo_s_t *p_fifo, int offset)
{
    char *tmp_read_addr;

    //! Check input parameters.
    ASSERT(p_fifo);

    if (offset > p_fifo->used_num)
    {
        return 0;
    }
    else
    {
        // Move Read Pointer to right position
        tmp_read_addr = p_fifo->p_read_addr + offset;
        if (tmp_read_addr > p_fifo->p_end_addr)
        {
            tmp_read_addr = tmp_read_addr - p_fifo->p_end_addr + p_fifo->p_start_addr - 1;
        }

        return *tmp_read_addr;
    }
}

/*
 *
 *
 *
 *
 */
int fifo_s_prereads(fifo_s_t *p_fifo, char *p_dest, int offset, int len)
{
    int retval;
    char *tmp_read_addr;
    int len_to_end;
    int len_from_start;

    ASSERT(p_fifo);

    if (NULL == p_dest)
    {
        return -1;
    }

    if (0 == p_fifo->used_num)
    {
        return -1;
    }

    if (offset >= p_fifo->used_num)
    {
        return -1;
    }

    MUTEX_LOCK(p_fifo->mutex);

    if (0 == p_fifo->used_num)
    {
        MUTEX_UNLOCK(p_fifo->mutex);
        return -1;
    }

    if (offset >= p_fifo->used_num)
    {
        MUTEX_UNLOCK(p_fifo->mutex);
        return -1;
    }

    tmp_read_addr = p_fifo->p_read_addr + offset;
    if (tmp_read_addr > p_fifo->p_end_addr)
    {
        tmp_read_addr = tmp_read_addr - p_fifo->p_end_addr + p_fifo->p_start_addr - 1;
    }

    len = (len < (p_fifo->used_num - offset)) ? len : (p_fifo->used_num - offset);
    len_to_end = p_fifo->p_end_addr - tmp_read_addr + 1;

    if (len_to_end >= len) //no rollback
    {
        len_to_end = len;
        memcpy(p_dest, tmp_read_addr, len_to_end);
    }
    else //rollback
    {
        len_from_start = len - len_to_end;
        memcpy(p_dest, tmp_read_addr, len_to_end);
        memcpy(p_dest + len_to_end, p_fifo->p_start_addr, len_from_start);
    }

    retval = len;
    MUTEX_UNLOCK(p_fifo->mutex);

    return retval;
}

//******************************************************************************************
//
//! \brief  FIFO is empty (in single mode)?
//!
//! \param  [in] p_fifo is the pointer of valid FIFO.
//!
//! \retval - None-zero(true) if empty.
//!         - Zero(false) if not empty.
//
//******************************************************************************************
char fifo_s_isempty(fifo_s_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);
    return (p_fifo->used_num ? 0 : 1);
}

//******************************************************************************************
//
//! \brief  FIFO is full (in single mode)?
//!
//! \param  [in] p_fifo is the pointer of valid FIFO.
//!
//! \retval - None-zero(true) if full.
//!         - Zero(false) if not full.
//
//******************************************************************************************
char fifo_s_isfull(fifo_s_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);
    return (p_fifo->free_num ? 0 : 1);
}

//******************************************************************************************
//
//! \brief  Get FIFO the number of elements(in single mode)?
//!
//! \param  [in] p_fifo is the pointer of valid FIFO.
//!
//! \retval The number of elements in FIFO.
//
//******************************************************************************************
int fifo_s_used(fifo_s_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);
    return p_fifo->used_num;
}

//******************************************************************************************
//
//! \brief  Get FIFO the number of elements(in single mode)?
//!
//! \param  [in] p_fifo is the pointer of valid FIFO.
//!
//! \retval The number of elements in FIFO.
//
//******************************************************************************************
int fifo_s_free(fifo_s_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);
    return p_fifo->free_num;
}

//******************************************************************************************
//
//! \brief  Flush the content of FIFO.
//!
//! \param  [in] p_fifo is the pointer of valid FIFO.
//!
//! \retval 0 if success, -1 if failure.
//
//******************************************************************************************
void fifo_s_flush(fifo_s_t *p_fifo)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    //! Initialize FIFO Control Block.
    MUTEX_LOCK(p_fifo->mutex);
    p_fifo->free_num = p_fifo->p_end_addr - p_fifo->p_start_addr + 1;
    p_fifo->used_num = 0;
    p_fifo->p_read_addr = p_fifo->p_start_addr;
    p_fifo->p_write_addr = p_fifo->p_start_addr;
    MUTEX_UNLOCK(p_fifo->mutex);
}

int fifo_s_discard(fifo_s_t *p_fifo, int len)
{
    //! Check input parameters.
    char *tmp_index;
    ASSERT(p_fifo);

    MUTEX_LOCK(p_fifo->mutex);
    if (len > p_fifo->used_num)
    {
        len = p_fifo->used_num;
    }

    tmp_index = len + p_fifo->p_read_addr;
    if (tmp_index > p_fifo->p_end_addr)
    {
        tmp_index = tmp_index - p_fifo->p_end_addr + p_fifo->p_start_addr - 1;
    }
    p_fifo->p_read_addr = tmp_index;
    p_fifo->free_num += len;
    p_fifo->used_num -= len;
    MUTEX_UNLOCK(p_fifo->mutex);
    return len;
}

#ifdef USE_DYNAMIC_MEMORY
//******************************************************************************************
//
//! \brief  Create An New FIFO Instance.
//! This function allocate enought room for N blocks fifo elements, then return the pointer
//! of FIFO.
//!
//! \param  [in] UnitSize is fifo element size.
//! \param  [in] UnitCnt is count of fifo elements.
//! \retval The Pointer of FIFO instance, return NULL is failure to allocate memory.
//!
//! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
//!            Header file before use this function.
//! \note   -# Functions FIFO_Create and FIFO_Destory must be used in pairs.
//!
//******************************************************************************************
fifo_t *fifo_create(char unit_size, int unit_cnt)
{
    fifo_t *p_fifo = NULL;    //!< FIFO Pointer
    char *p_base_addr = NULL; //!< Memory Base Address

    //! Check input parameters.
    ASSERT(unit_size);
    ASSERT(unit_cnt);

    //! Allocate Memory for pointer of new FIFO Control Block.
    p_fifo = (fifo_t *)malloc(sizeof(fifo_t));
    if (NULL == p_fifo)
    {
        //! Allocate Failure, exit now.
        return (NULL);
    }

    //! Allocate memory for FIFO.
    p_base_addr = malloc(unit_size * unit_cnt);
    if (NULL == p_base_addr)
    {
        //! Allocate Failure, exit now.
        free(p_fifo);
        return (NULL);
    }

    //! Initialize General FIFO Module.
    fifo_init(p_fifo, p_base_addr, unit_size, unit_cnt);

    return (p_fifo);
}

//******************************************************************************************
//
//! \brief  Destory FIFO Instance.
//!  This function release memory, then reinit the FIFO struct.
//!
//! \param  [in] pFIFO is the pointer of FIFO instance
//! \retval None.
//!
//! \note   -# You must enable USE_MEMORY_ALLOC macro and ensure your system have <stdlib.h>
//!            Header file before use this function.
//
//******************************************************************************************
void fifo_destory(fifo_t *p_fifo)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_fifo->p_start_addr);

    //! Free FIFO memory
    free(p_fifo->p_start_addr);
    //! Free FIFO Control Block memory.
    free(p_fifo);

    return; //!< Success
}

#endif // USE_DYNAMIC_MEMORY

//******************************************************************************************
//
//! \brief  Initialize an static FIFO struct.
//!
//! \param  [in] pFIFO is the pointer of valid FIFO instance.
//! \param  [in] pBaseAddr is the base address of pre-allocate memory, such as array.
//! \param  [in] UnitSize is fifo element size.
//! \param  [in] UnitCnt is count of fifo elements.
//! \retval 0 if initialize successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_init(fifo_t *p_fifo, void *p_base_addr, char unit_size, int unit_cnt)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_base_addr);
    ASSERT(unit_size);
    ASSERT(unit_cnt);

    //! Initialize FIFO Control Block.
    p_fifo->p_start_addr = (char *)p_base_addr;
    p_fifo->p_end_addr = (char *)p_base_addr + unit_size * unit_cnt - 1;
    p_fifo->free_num = unit_cnt;
    p_fifo->used_num = 0;
    p_fifo->unit_size = unit_size;
    p_fifo->p_read_addr = (char *)p_base_addr;
    p_fifo->p_write_addr = (char *)p_base_addr;

    MUTEX_INIT(p_fifo->mutex);

    return (0);
}

//******************************************************************************************
//
//! \brief  Put an element into FIFO.
//!
//! \param  [in]  pFIFO is the pointer of valid FIFO.
//! \param  [in]  pElement is the address of element you want to put
//!
//! \retval 0 if operate successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_put(fifo_t *p_fifo, void *p_element)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_element);

    // Full ?
    if (0 == p_fifo->free_num)
    {
        //! Error, FIFO is full!
        return (-1);
    }

    //! Copy Data
    MUTEX_LOCK(p_fifo->mutex);

    if (0 == p_fifo->free_num)
    {
        //! Error, FIFO is full!
        MUTEX_UNLOCK(p_fifo->mutex);
        return (-1);
    }

    if (p_fifo->p_write_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_write_addr = p_fifo->p_start_addr;
    }

    memcpy(p_fifo->p_write_addr, p_element, p_fifo->unit_size);
    p_fifo->p_write_addr += p_fifo->unit_size;
    p_fifo->free_num--;
    p_fifo->used_num++;
    MUTEX_UNLOCK(p_fifo->mutex);

    return (0);
}

//******************************************************************************************
//
//! \brief  Put an element into FIFO without protect.
//!
//! \param  [in]  pFIFO is the pointer of valid FIFO.
//! \param  [in]  pElement is the address of element you want to put
//!
//! \retval 0 if operate successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_put_noprotect(fifo_t *p_fifo, void *p_element)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_element);

    // Full ?
    if (0 == p_fifo->free_num)
    {
        //! Error, FIFO is full!
        return (-1);
    }

    if (p_fifo->p_write_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_write_addr = p_fifo->p_start_addr;
    }

    memcpy(p_fifo->p_write_addr, p_element, p_fifo->unit_size);
    p_fifo->p_write_addr += p_fifo->unit_size;
    p_fifo->free_num--;
    p_fifo->used_num++;

    return (0);
}

//******************************************************************************************
//
//! \brief  Get an element from FIFO without protect.
//!
//! \param  [in]  pFIFO is the pointer of valid FIFO.
//! \param  [out] pElement is the address of element you want to get
//!
//! \retval 0 if operate successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_get(fifo_t *p_fifo, void *p_element)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_element);

    // Empty ?
    if (0 == p_fifo->used_num)
    {
        //! Error, FIFO is Empty!
        return (-1);
    }

    //! Copy Data
    MUTEX_LOCK(p_fifo->mutex);

    if (0 == p_fifo->used_num)
    {
        //! Error, FIFO is Empty!
        MUTEX_UNLOCK(p_fifo->mutex);
        return (-1);
    }

    if (p_fifo->p_read_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_read_addr = p_fifo->p_start_addr;
    }
    memcpy(p_element, p_fifo->p_read_addr, p_fifo->unit_size);
    p_fifo->p_read_addr += p_fifo->unit_size;
    p_fifo->free_num++;
    p_fifo->used_num--;
    MUTEX_UNLOCK(p_fifo->mutex);

    return (0);
}

//******************************************************************************************
//
//! \brief  Get an element from FIFO.
//!
//! \param  [in]  pFIFO is the pointer of valid FIFO.
//! \param  [out] pElement is the address of element you want to get
//!
//! \retval 0 if operate successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_get_noprotect(fifo_t *p_fifo, void *p_element)
{
    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_element);

    // Empty ?
    if (0 == p_fifo->used_num)
    {
        //! Error, FIFO is Empty!
        return (-1);
    }

    if (p_fifo->p_read_addr > p_fifo->p_end_addr)
    {
        p_fifo->p_read_addr = p_fifo->p_start_addr;
    }
    memcpy(p_element, p_fifo->p_read_addr, p_fifo->unit_size);
    p_fifo->p_read_addr += p_fifo->unit_size;
    p_fifo->free_num++;
    p_fifo->used_num--;

    return (0);
}

//******************************************************************************************
//
//! \brief  Pre-Read an element from FIFO.
//!
//! \param  [in]  pFIFO is the pointer of valid FIFO.
//! \param  [in]  Offset is the offset from current pointer.
//! \param  [out] pElement is the address of element you want to get
//!
//! \retval 0 if operate successfully, otherwise return -1.
//
//******************************************************************************************
int fifo_pre_read(fifo_t *p_fifo, char offset, void *p_element)
{
    char *_pre_red_index = (void *)0;

    //! Check input parameters.
    ASSERT(p_fifo);
    ASSERT(p_element);

    // OverFlow ?
    if (offset >= p_fifo->used_num)
    {
        return (-1);
    }

    // Move Read Pointer to right position
    _pre_red_index = p_fifo->p_read_addr + p_fifo->unit_size * offset;
    while (_pre_red_index > p_fifo->p_end_addr)
    {
        _pre_red_index = _pre_red_index - p_fifo->p_end_addr + p_fifo->p_start_addr - 1;
    }
    //! Copy Data
    memcpy(p_element, _pre_red_index, p_fifo->unit_size);

    return (0);
}

//******************************************************************************************
//
//! \brief  FIFO is empty ?
//!
//! \param  [in] pFIFO is the pointer of valid FIFO.
//!
//! \retval - None-zero(true) if empty.
//!         - Zero(false) if not empty.
//
//******************************************************************************************
int fifo_is_empty(fifo_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);

    return (0 == p_fifo->used_num);
}

//******************************************************************************************
//
//! \brief  FIFO is full ?
//!
//! \param  [in] pFIFO is the pointer of valid FIFO.
//!
//! \retval - None-zero(true) if full.
//!         - Zero(false) if not full.
//
//******************************************************************************************
int fifo_is_full(fifo_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);

    return (0 == p_fifo->free_num);
}

//******************************************************************************************
//
//! \brief  Get FIFO the number of elements?
//!
//! \param  [in] pFIFO is the pointer of valid FIFO.
//!
//! \retval The number of elements in FIFO.
//
//******************************************************************************************
int fifo_used(fifo_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);

    return (p_fifo->used_num);
}

//******************************************************************************************
//
//! \brief  Get FIFO the number of elements?
//!
//! \param  [in] pFIFO is the pointer of valid FIFO.
//!
//! \retval The number of elements in FIFO.
//
//******************************************************************************************
int fifo_free(fifo_t *p_fifo)
{
    //! Check input parameter.
    ASSERT(p_fifo);

    return (p_fifo->free_num);
}

//******************************************************************************************
//
//! \brief  Flush the content of FIFO.
//!
//! \param  [in] pFIFO is the pointer of valid FIFO.
//!
//! \retval 0 if success, -1 if failure.
//
//******************************************************************************************
int fifo_flush(fifo_t *p_fifo)
{
    //! Check input parameters.
    ASSERT(p_fifo);

    //! Initialize FIFO Control Block.
    MUTEX_LOCK(p_fifo->mutex);
    p_fifo->free_num = (p_fifo->p_end_addr - p_fifo->p_start_addr) / (p_fifo->unit_size);
    p_fifo->used_num = 0;
    p_fifo->p_read_addr = p_fifo->p_start_addr;
    p_fifo->p_write_addr = p_fifo->p_start_addr;
    MUTEX_UNLOCK(p_fifo->mutex);

    return (0);
}

2.7 重定向printf到串口打印
#ifdef __GNUC__
/* With GCC, small printf (option LD Linker->Libraries->Small printf

  set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */

PUTCHAR_PROTOTYPE
{
    /* Place your implementation of fputc here */
    /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */
    HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xFFFF);
    return ch;
}
2.8 结合fifo和i2s dma读取i2s音频数据并通过usb虚拟串口转发上位机
 HAL_Delay(1000);
    printf("dma size:%lu\n", sizeof(dma));
    g_i2s_dma_recv_fifo = fifo_s_create(480);
    if (!g_i2s_dma_recv_fifo) {
        printf("fifo cre failed.\n");
        return -1;
    }
    HAL_I2S_Receive_DMA(&hi2s2, (uint16_t *)dma, 2);
    while (1)
    {
        /* USER CODE END WHILE */

        /* USER CODE BEGIN 3 */
        if (!fifo_s_isempty(g_i2s_dma_recv_fifo)) {
            char res[4] = {'\0'};
            if (fifo_s_gets(g_i2s_dma_recv_fifo, res, sizeof(res)) > 0) {
                CDC_Transmit_HS((uint8_t*)res, sizeof(res));
            }
        }
    }
    fifo_s_destroy(g_i2s_dma_recv_fifo);
uint16_t dma[2] = {'\0'};
fifo_s_t *g_i2s_dma_recv_fifo = NULL;

void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
    if(hi2s==&hi2s2) {
        if (dma[0] || dma[1]) {
            if (!fifo_s_isfull(g_i2s_dma_recv_fifo)) {
                fifo_s_puts(g_i2s_dma_recv_fifo, (char*)dma, sizeof(dma)/2);
            }
        }
    }
}
2.9 usb虚拟串口接收上位机的pcm数据并通过i2s dma写入音频卡播放
static int8_t CDC_Receive_HS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 11 */
  uint16_t len = *Len;
//    printf("recv len:%d\n", len);
//    printf("recv:%s\n", Buf);
    if (!fifo_s_isfull(g_i2s_dma_send_fifo)) {
        fifo_s_puts(g_i2s_dma_send_fifo, (char*)Buf, *Len);
    } else {
        printf("fifo is full!\n");
    }

  USBD_CDC_SetRxBuffer(&hUsbDeviceHS, &Buf[0]);
  USBD_CDC_ReceivePacket(&hUsbDeviceHS);
  return (USBD_OK);
  /* USER CODE END 11 */
}
2.10 融合收发DMA(只有一个方向可以生效,收发需要配置不通模式,无法实现全双工收发,而且需要配置SPI全局中断)
fifo_s_t *g_i2s_dma_send_fifo = NULL;

uint16_t dma[2] = {'\0'};
fifo_s_t *g_i2s_dma_recv_fifo = NULL;

void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
    if(hi2s==&hi2s2) {
        if (dma[0] || dma[1]) {
            if (!fifo_s_isfull(g_i2s_dma_recv_fifo)) {
                fifo_s_puts(g_i2s_dma_recv_fifo, (char*)dma, sizeof(dma)/2);
            }
        }
    }
}
HAL_Delay(1000);
    printf("dma size:%lu\n", sizeof(dma));

    g_i2s_dma_send_fifo = fifo_s_create(4 * 4800);
    if (!g_i2s_dma_send_fifo) {
        printf("fifo cre failed.\n");
        return -1;
    }

    g_i2s_dma_recv_fifo = fifo_s_create(480);
    if (!g_i2s_dma_recv_fifo) {
        printf("fifo cre failed.\n");
        return -1;
    }
    HAL_I2S_Receive_DMA(&hi2s2, (uint16_t *)dma, 2);
    while (1)
    {
        /* USER CODE END WHILE */

        /* USER CODE BEGIN 3 */
        if (!fifo_s_isempty(g_i2s_dma_recv_fifo)) {
            char res[4] = {'\0'};
            if (fifo_s_gets(g_i2s_dma_recv_fifo, res, sizeof(res)) > 0) {
                CDC_Transmit_HS((uint8_t*)res, sizeof(res));
            }
        }

        if (!fifo_s_isempty(g_i2s_dma_send_fifo)) {
            char res[4 * 48] = {'\0'};
            if (fifo_s_gets(g_i2s_dma_send_fifo, res, sizeof(res)) > 0) {
                printf("res:%02x%02x\n", res[0], res[1]);
                while (HAL_I2S_GetState(&hi2s2) != HAL_I2S_STATE_READY) {

                }
                int ret = HAL_I2S_Transmit_DMA(&hi2s2,(uint16_t*)res, sizeof(res));
//                int ret = HAL_I2SEx_TransmitReceive_DMA(&hi2s2,(uint16_t*)res, dma, 48);
//                int ret = HAL_I2S_Transmit(&hi2s2,(uint16_t*)res, 48, 0xFFFF);
                if (ret != HAL_OK) {
                    printf("ret:%d\n", ret);
                    while (HAL_I2S_GetState(&hi2s2) != HAL_I2S_STATE_READY) {

                    }
                }
            }
        }
    }
    fifo_s_destroy(g_i2s_dma_recv_fifo);
    fifo_s_destroy(g_i2s_dma_send_fifo);
2.11 全双工收发进行录音和放音(最终版本结合DMA收和发)

官方给到的例子也是全双工方式进行读写的,注意回调接口别搞错了(https://community.st.com/t5/stm32-mcus-products/stm32f411-hal-driver-i2s-full-duplex-ext-sd-issue/td-p/442735 社区这里提问的人就是搞错了回调接口):

fifo_s_t *g_i2s_dma_send_fifo = NULL;
uint8_t dma[2 * 2] = {'\0'};
uint8_t send_dma[2 * 2] = {'\0'};
fifo_s_t *g_i2s_dma_recv_fifo = NULL;
uint8_t is_record = 1;
uint8_t is_player = 0;
typedef enum {
    RECORD_START,
    RECORD_STOP,
    PLAYER_START,
    PLAYER_STOP,
} I2S_STATE;

void HAL_I2SEx_TxRxCpltCallback(I2S_HandleTypeDef *hi2s)
{
    if(hi2s==&hi2s2) {
        if (is_record) {
            if (dma[0]) {
                if (!fifo_s_isfull(g_i2s_dma_recv_fifo)) {
                    fifo_s_puts(g_i2s_dma_recv_fifo, (char *) dma, sizeof(dma));
                }
            }
        }

        if (is_player) {
            if (!fifo_s_isempty(g_i2s_dma_send_fifo) && is_player) {
                char res[4] = {'\0'};
                if (fifo_s_gets(g_i2s_dma_send_fifo, res, sizeof(res)) > 0) {
//                    printf("i am here.\n");
                    memcpy(send_dma, res, sizeof(res));
                }
            }
        }
    }
}
	HAL_Delay(1000);
    printf("dma size:%lu\n", sizeof(dma));

    g_i2s_dma_send_fifo = fifo_s_create(4 * 4800);
    if (!g_i2s_dma_send_fifo) {
        printf("fifo cre failed.\n");
        return -1;
    }

    g_i2s_dma_recv_fifo = fifo_s_create(480);
    if (!g_i2s_dma_recv_fifo) {
        printf("fifo cre failed.\n");
        return -1;
    }
//    HAL_I2SEx_TransmitReceive(&hi2s2, send_dma, dma, 2, 1000);
    HAL_I2SEx_TransmitReceive_DMA(&hi2s2, (uint16_t*)send_dma, (uint16_t*)dma, (sizeof(dma)/2));
    while (1)
    {
        /* USER CODE END WHILE */

        /* USER CODE BEGIN 3 */
        if (!fifo_s_isempty(g_i2s_dma_recv_fifo)) {
            char res[4] = {'\0'};
            if (fifo_s_gets(g_i2s_dma_recv_fifo, res, sizeof(res)) > 0) {
                CDC_Transmit_HS((uint8_t*)res, sizeof(res));
            }
        }
    }
    fifo_s_destroy(g_i2s_dma_recv_fifo);
    fifo_s_destroy(g_i2s_dma_send_fifo);
2.12 其它方式

还有一种方式创建较大的缓存区,增加HAL_I2SEx_TxRxHalfCpltCallback回调在接收到一半时处理缓存的前半部分,HAL_I2SEx_TxRxCpltCallback回调处理后半部分缓存。以上都是基于HAL库,还有不基于HAL库的方式,但是不建议使用,HAL库更容易移植一些。

3、难点

3.1 录音

主要是调整i2s dma对应的配置以及将读取到的数据转发给上位机保证不丢采样内容,这个调整尝试过程属于摸着石头过河,很不好调试。比如我这里接收时i2s每次接收两个字节,但是通过usb虚拟串口转发上位机时每次需要发送4个字节,如果每次只发送2个字节则采样数据会丢失一半左右,中间还需要增加fifo缓存解决接收和发送速度不对等的问题。

3.2 放音

测试方式比较麻烦,最好有外接的放音设备,部分音频控制板可以配置自身扬声器显示自身麦克风声音,这样I2S的收发都可以通过一个音频控制卡听到了(但测试录音时记得关闭麦克风):
image.png

3.3 缓存问题

i2s dma收发和存储读写时的速度不对等问题,比如录音时需要从i2s dma读取然后存储到外挂U盘或者flash或者直接串口转发,这时dma读取和存储就有不对等的问题,可能导致采样数据丢失,因此需要中间缓存保证采样数据不丢失,也可以降低采样率;放音时一般一次读取的内容太多导致一次性发送dma时超过缓存大小,因此也最好增加缓存一次性发送一部分内容到dma。
此外,对应i2s的spi全局中断要开启,否则可能出现状态busy的问题:
image.png

3.4 底噪问题

发送时进行简单数据过滤,单声道的过滤另一声道的杂音,即不发送部分采样值,以及清空缓存时注意结合半缓存接收回调处理。

如果声音有了,但是有杂音可以录制一下空音看是否有杂音,如果空音有杂音,可以量一下声卡和单片机的主频,可能作为从模式的一方主频并未禁用,导致连接主频mclk后有干扰导致的杂音。
除了硬件问题外,软件读写文件也需要注意,这也容易引起底噪,比如录音时flash的擦除影响写文件,放音时读取文件往dma填充时读取文件的大小和填充0不正常导致放音底噪,这里一定记得参考一下官网的audio示例(回调中获取过半和完全传输完成的标志后再填充,之后还原标志):

void WavePlayBack(uint32_t AudioFreq)
{ 
  UINT bytesread = 0;
  
  /* Start playing */
  AudioPlayStart = 1;
  RepeatState = REPEAT_ON;
  
  /* Initialize Wave player (Codec, DMA, I2C) */
  if(WavePlayerInit(AudioFreq) != 0)
  {
    Error_Handler();
  }
  
  /* Get Data from USB Flash Disk */
  f_lseek(&FileRead, 0);
  f_read (&FileRead, &Audio_Buffer[0], AUDIO_BUFFER_SIZE, &bytesread);
  AudioRemSize = WaveDataLength - bytesread;
  
  /* Start playing Wave */
  BSP_AUDIO_OUT_Play((uint16_t*)&Audio_Buffer[0], AUDIO_BUFFER_SIZE);
  LEDsState = LED6_TOGGLE;
  PauseResumeStatus = RESUME_STATUS;
  PressCount = 0;
  
  /* Check if the device is connected.*/
  while((AudioRemSize != 0) && (AppliState != APPLICATION_IDLE))
  { 
    /* Test on the command: Playing */
    if(CmdIndex == CMD_PLAY)
    { 
      if(PauseResumeStatus == PAUSE_STATUS)
      {
        /* Stop Toggling LED2 to signal Pause */
        LEDsState = STOP_TOGGLE;
        /* Pause playing Wave */
        WavePlayerPauseResume(PauseResumeStatus);
        PauseResumeStatus = IDLE_STATUS;
      }
      else if(PauseResumeStatus == RESUME_STATUS)
      {
        /* Toggling LED6 to signal Play */
        LEDsState = LED6_TOGGLE;
        /* Resume playing Wave */
        WavePlayerPauseResume(PauseResumeStatus);
        PauseResumeStatus = IDLE_STATUS;
      }  
      
      bytesread = 0;
      
      if(BufferOffset == BUFFER_OFFSET_HALF)
      {
        f_read(&FileRead, 
               &Audio_Buffer[0], 
               AUDIO_BUFFER_SIZE/2, 
               (void *)&bytesread); 
        
        BufferOffset = BUFFER_OFFSET_NONE;
      }
      
      if(BufferOffset == BUFFER_OFFSET_FULL)
      {
        f_read(&FileRead, 
               &Audio_Buffer[AUDIO_BUFFER_SIZE/2], 
               AUDIO_BUFFER_SIZE/2, 
               (void *)&bytesread); 
        
        BufferOffset = BUFFER_OFFSET_NONE;
      } 
      if(AudioRemSize > (AUDIO_BUFFER_SIZE / 2))
      {
        AudioRemSize -= bytesread;
      }
      else
      {
        AudioRemSize = 0;
      }
    }
    else 
    {
      /* Stop playing Wave */
      WavePlayerStop();
      f_close(&FileRead);
      AudioRemSize = 0;
      RepeatState = REPEAT_ON;
      break;
    }
  }
#ifdef PLAY_REPEAT_DISABLED 
  RepeatState = REPEAT_OFF;
  /* Stop playing Wave */
  WavePlayerStop();
  f_close(&FileRead);
  /* Test on the command: Playing */
  if(CmdIndex == CMD_PLAY)
  {
    LEDsState = LED4_TOGGLE;
  }
#else 
  LEDsState = LEDS_OFF;
  RepeatState = REPEAT_ON;
  AudioPlayStart = 0;
  /* Stop playing Wave */
  WavePlayerStop();
  f_close(&FileRead);
#endif /* PLAY_REPEAT_DISABLED */
}
3.5 音质问题

目前音频播放有丢低音的情况,播放的音频比较尖锐,缺少低沉浑厚的声音,感觉感觉是单片机的问题。
主要还是配置参数的问题,保证晶振频率设置正确,以及PLLI2SN和PLLI2SR设置好,这个可以通过stm32CubeMX配置后设置。

//采样率计算公式:Fs=I2SxCLK/[256*(2*I2SDIV+ODD)]
//I2SxCLK=(HSE/pllm)*PLLI2SN/PLLI2SR
//一般HSE=8Mhz 
//pllm:在Sys_Clock_Set设置的时候确定,一般是8
//PLLI2SN:一般是192~432 
//PLLI2SR:2~7
//I2SDIV:2~255
//ODD:0/1
//I2S分频系数表@pllm=8,HSE=8Mhz,即vco输入频率为1Mhz
//表格式:采样率/10,PLLI2SN,PLLI2SR,I2SDIV,ODD
const u16 I2S_PSC_TBL[][5]=
{
	{800 ,100,2,24,0},		//8Khz采样率
	{1102,429,4,19,0},		//11.025Khz采样率 
	{1600,213,2,13,0},		//16Khz采样率
	{2205,429,4, 9,1},		//22.05Khz采样率
	{3200,213,2, 6,1},		//32Khz采样率
	{4410,271,2, 6,0},		//44.1Khz采样率
	{4800,100,2, 4,0},		//48Khz采样率
	{8820,316,2, 3,1},		//88.2Khz采样率
	{9600,344,2, 3,1},  	//96Khz采样率
	{17640,361,2,2,0},  	//176.4Khz采样率 
	{19200,393,2,2,0},  	//192Khz采样率
};  
//设置IIS的采样率(@MCKEN)
//samplerate:采样率,单位:Hz
//返回值:0,设置成功;1,无法设置.
u8 I2S2_SampleRate_Set(u32 samplerate)
{ 
	u8 i=0; 
	u32 tempreg=0;
	samplerate/=10;//缩小10倍   
	
	for(i=0;i<(sizeof(I2S_PSC_TBL)/10);i++)//看看改采样率是否可以支持
	{
		if(samplerate==I2S_PSC_TBL[i][0])break;
	}
 
	RCC_PLLI2SCmd(DISABLE);//先关闭PLLI2S
	if(i==(sizeof(I2S_PSC_TBL)/10))return 1;//搜遍了也找不到
	RCC_PLLI2SConfig((u32)I2S_PSC_TBL[i][1],(u32)I2S_PSC_TBL[i][2]);//设置I2SxCLK的频率(x=2)  设置PLLI2SN PLLI2SR
 
	RCC->CR|=1<<26;					//开启I2S时钟
	while((RCC->CR&1<<27)==0);		//等待I2S时钟开启成功. 
	tempreg=I2S_PSC_TBL[i][3]<<0;	//设置I2SDIV
	tempreg|=I2S_PSC_TBL[i][4]<<8;	//设置ODD位
	tempreg|=1<<9;					//使能MCKOE位,输出MCK
	SPI2->I2SPR=tempreg;			//设置I2SPR寄存器 
	return 0;
}

后续发现音质问题解决了,可能原因(包括杂音):

  • 1、是采样率匹配问题,采样率设置不对一定会导致杂音、快进慢放等问题;
  • 2、一个是单双声道问题,生成wav文件时如果声卡设备转换为双声道但是按照单声道处理就会有问题,数据量是双声道的,但是存储时处理了一半;
  • 3、还有一个可能就是声卡设备的干扰问题,比如声卡i2s或者某些引脚接线不对导致影响数字信号采集;
  • 4、还有发现一个问题,声卡i2s的收和发的数据长度设置不一致,比如发设置了标准的16位长度,而接收设置了16位扩展32位长度,导致i2s初始化后接收可能正常,但是发送时声卡收不到数据从而导致录音没有声音;
  • 5、如果使用spi flash+fatfs进行音频文件写入的,那么音频波形快进样式也可能是spi flash的驱动问题导致的,正片擦除后写入时写入速度快就不会有这个问题,需要在写入前先擦除,如果写入时再擦除会影响写入速度从而影响录音;(调试时可以用示波器先确认硬件对应引脚输出的频率是否符合预期)

采样率的时钟频率F4按照下图配置即可(比如48khz的固定为258的PLLI2SN和3的PLLi2SR,不同外部输入时钟可以设置对应分频后为1MHZ,比如8MHZ的则设置8分频,25MHZ的设置为25)

比如我这里是25MHZ的:(如果是8MHZ的则M设置为8,后面N和R固定为258和3)
image.png

4、结果

由于是音频内容不太好展示,主要是通过Audacity或者cool edit pro软件来导入原始的pcm数据进行测试,主要配置导入时的参数即可(实时测试时可以通过串口查看波形)。
image.png
结果(波形的高度和声音的大小也有关系,此外,对于48khz的音频stm32也有1%左右的采样丢失问题,会有一定的失真的问题,因此,对于人声采集一般建议还是低采样,比如8khz):
image.png

六、最后

使用单片机进行音频的研究确实本人还是第一次,而且资料较少,相对于带系统的Linux、Windows等开发音频软件较复杂,因此这次花费时间较长,所幸最终是研究出来了,官方社区加持以及一些前人总结帮了不少忙,即使这样也还是走了不少弯路,因此希望本总结也能帮助更多的人。

标签:MDK,return,addr,DMA,int,I2S,FIFO,len,fifo
From: https://blog.csdn.net/weixin_39510813/article/details/137479775

相关文章

  • pdmaner-代码生成器的使用
    一、什么是pdmanerPDManer是一款开源免费的数据库模型建模工具,它以其用户友好的界面和简单的操作流程而受到用户的欢迎。以下是一些关于PDManer的特点:多平台支持:支持Windows、Mac和Linux等多种操作系统,甚至包括国产操作系统。高颜值界面:界面设计简洁美观,使得用户上手更为容易......
  • 基于CMDKEY的方式修改用户凭据
    1、通过CMD方式在Windows中,凭据是指用户登录系统时的用户名和密码。在CMD中,可以使用cmdkey工具来添加、删除或更新凭据。例如,要添加新的凭据以连接到远程资源,可以使用以下命令:cmdkey/add:TargetName/user:Username/pass:Password这里的TargetName是远程资源的名称,......
  • DMA-BUF
    学习资料:https://blog.csdn.net/hexiaolong2009/category_10838100.htmlhttps://www.cnblogs.com/sky-heaven/category/1288321.htmlhttps://www.kernel.org/doc/html/v6.6/driver-api/dma-buf.html#dma-fences-functions-reference 此处初步记录,后学习总结 ......
  • DMA_CYCLIC使用
    DMA传输类型:enumdma_transaction_type{DMA_MEMCPY,//内存拷贝DMA_XOR,//异或操作DMA_PQ,//乘方操作DMA_XOR_VAL,//异或值操作DMA_PQ_VAL,......
  • 3dmax效果图制作辅助工具-渲染100优化工具箱使用方法
    (1)打开渲染100官网,点击客户端下载(注:已有客户端的朋友也一定要至官网下载最新客户端,未注册用户填写邀请码1899领取渲染券)渲染100官网网址:http://www.xuanran100.com?ycode=1899(2)点击面板上的优化工具箱,如满足开启条件点击【开启工作箱】即可在3dsmax中使用。客户端点击开启......
  • m基于OFDM系统的PAPR性能matlab仿真,对比LFDMA,IFDMA,DFDMA
    1.算法仿真效果matlab2022a仿真结果如下:   2.算法涉及理论知识概要       在正交频分复用(OrthogonalFrequencyDivisionMultiplexing,OFDM)系统中,信号的峰值功率相对于其平均功率的比例称为峰均功率比(Peak-to-AveragePowerRatio,PAPR)。由于多个子载波的叠......
  • DMA Engine框架(二)
    参考资料:Linux内核4.14版本——DMAEngine框架分析(3)_dmacontroller驱动_dma_cookie_status-CSDN博客linux内核之dmaengine_dmaengine总线地址-CSDN博客  structdma_device:structdma_device{structkrefref;unsignedintchancnt;un......
  • DMA pool
    在Linux内核中,用于管理DMA内存池的相关函数通常包含在内核的DMAAPI中。以下是一些常见的DMA内存池管理函数:structdma_pool*dma_pool_create(constchar*name,structdevice*dev,size_tsize,size_talign,size_tallocation);功能:创建一个新的DMA内存池。参数:name:......
  • DMA cache一致性二
    参考资料:宋宝华:那些年你误会的LinuxDMA(关于LinuxDMAZONE和API最透彻的一篇)-CSDN博客https://blog.csdn.net/waterhawk/article/details/50723677https://www.linuxidc.com/Linux/2012-09/69591p2.htm注:本节有一些个人理解,如有误请谅解 dma_alloc_coherent与dma_alloc_wr......
  • MDK中如何使用STM32CubeMX来配置工程和生成初始化代码?
    在MDK中使用STM32CubeMX配置工程和生成初始化代码是一个高效的开发流程,它可以显著提高开发效率并减少手动配置错误。以下是详细的步骤和示例代码,展示如何使用STM32CubeMX来配置工程,并将其与MDK结合使用。1.安装STM32CubeMX首先,访问STMicroelectronics的官方网站,下载并安......