初始化
首先,介绍我们导入的包和基础的网络结构
import torch
import torch.nn as nn
#可替代网络结构部分
'''
神经网络类的定义
1. 输入卷积: in_channel = 1, out_channel = 12, kernel_size = (5, 5), stride = (2, 2), padding = 2
2. 激活函数: 1.7159Tanh(2/3*x)
3. 第二层卷积: in_channel = 12, out_channel = 12, kernel_size = (5, 5), stride = (2, 2), padding = 2
4. 激活函数同上
5. 全连接层: 192 * 30
6. 激活函数同上
7. 全连接层:30 * 10
8. 激活函数同上
按照论文的说明,需要对网络的权重进行一个[-2.4/F_in, 2.4/F_in]的均匀分布的初始化
'''
class LeNet1989(nn.Module):
def __init__(self):
super(LeNet1989, self).__init__()
self.conv1 = nn.Conv2d(1, 12, 5, stride=2, padding=2)
self.act1 = nn.Tanh()
self.conv2 = nn.Conv2d(12, 12, 5, stride=2, padding=2)
self.act2 = nn.Tanh()
self.fc1 = nn.Linear(192, 30)
self.act3 = nn.Tanh()
self.fc2 = nn.Linear(30, 10)
self.act4 = nn.Tanh()
for m in self.modules():
if isinstance(m, nn.Conv2d):
F_in = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
m.weight.data = torch.rand(m.weight.data.size()) * 4.8 / F_in - 2.4 / F_in
if isinstance(m, nn.Linear):
F_in = m.in_features
m.weight.data = torch.rand(m.weight.data.size()) * 4.8 / F_in - 2.4 / F_in
def forward(self, x):
x = self.conv1(x)
x = 1.7159 * self.act1(2.0 * x / 3.0)
x = self.conv2(x)
x = 1.7159 * self.act2(2.0 * x / 3.0)
x = x.view(-1, 192)
x = self.fc1(x)
x = 1.7159 * self.act3(2.0 * x / 3.0)
x = self.fc2(x)
out = 1.7159 * self.act4(2.0 * x / 3.0)
return out
查看网络参数
方法一
推荐使用方法一,因为方法二可以得到更多的信息,但是要注意的是这一段看情况添加
看网络是在GPU跑还是CPU跑,我相信大部分是GPU,就用下面这个就可
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = LeNet1989().to(device)
用CPU就用这个
net = LeNet1989()
下面的部分就注意输入图片的input_size就可
from torchsummary import summary
#batch_size可以不指定,默认为-1,输入 模型(model)、输入尺寸(input_size)、批次大小(batch_size)、运行平台(device)
#summary(model, input_size, batch_size, device)
summary(net, input_size=(1, 16, 16), batch_size=1)
运行结果:
方法二
代码:
#查看网络参数部分
net = LeNet1989()
print(net)
params = list(net.parameters())
k = 0
for i in params:
l = 1
# print("该层的结构:"+ str(list(i.size())))
for j in i.size():
l *= j
# print("该层参数和:"+ str(l))
k = k + l
print('总参数和:' + str(k))
运行结果:
查看网络结构
from tensorboardX import SummaryWriter # pip install tensorboardX
x = torch.randn(1, 16, 16) # 例如:x = torch.randn(1, 64, 64, 64)
net = LeNet1989()
writer = SummaryWriter('./tensorboard')
with writer:
writer.add_graph(net, (x,))
# 终端中输入:tensorboard --logdir=tensorboard/ --host=127.0.0.1
图片通道转换
彩色图转灰度图
from torchvision import transforms
transform = transforms.Compose([
transforms.Grayscale(num_output_channels=1), # 彩色图像转灰度图像num_output_channels默认1
transforms.ToTensor()
])
彩色图(三通道)转指定R,G,B通道
def change_image_channels(image):
# 3通道转单通道
if image.mode == 'RGB':
r, g, b = image.split()
return r,g,b
模型测试调用
.pt, .pth, .pkl文件都可
保存:
torch.save(model, mymodel.pth)#保存整个model的状态
调用:
model=torch.load(mymodel.pth)#这里已经不需要重构模型结构了,直接load就可以
model.eval()
标签:功能,12,nn,self,torch,留存,Pytorch,net,size
From: https://www.cnblogs.com/dongxuelove/p/16794593.html