首页 > 其他分享 >20201306吴龙灿第四章学习笔记

20201306吴龙灿第四章学习笔记

时间:2022-10-15 17:13:33浏览次数:72  
标签:right int 吴龙灿 线程 20201306 pthread NULL 第四章 left

知识点归纳

前言

学习了解并发编程的概念,理解并行计算的概念和重要性;掌握线程的原理和其对于进程的优势。通过学习Pthread线程操作,了解如何使用线程进行并发编程;理解死锁问题;通过编程实践更加深入的理解多任务处理、线程同步和并发编程的原理及方法。
并行计算与并行编程
并行计算是一种计算体系结构,其中多个处理器同时执行从一个较大的复杂问题中分解出来的多个、较小的计算任务。近年来并行计算已成为计算机体系结构中的主要范例,主要以多核处理器的形式出现。

并行编程

在并行机提供的并行编程环境上,具体实现并行算法,编制并行程序,并运行该程序,从而达到并行求解应用问题的目的。

并行与并发

并行算法只识别可执行的任务,并行算法中的所有任务都应该同时实时执行。
并发性是通过多任务处理实现的。

线程

线程是某进程同一地址空间上的独立执行单元。
创建某个进程就是在一个唯一地址空间创建一个线程。当某进程开始时,就会执行该进程的主线程。如果只有一个主线程,那么进程和线程实 际上并没有区别。但是, 主线程可能会创建其他线程。 每个线程又可以创建更多的线程等。 某进程的所有线程都在该进程的相同地址空间中执行, 但每个线程都是一个独立的执行单元。
实现线程主要有三种方式:

(1)使用内核线程实现
(2)使用用户线程实现
(3)使用用户线程加轻量级进程混合实现

线程的优点

线程创建和切换速度更快

若要在某个进程中创建线程,操作系统不必为新的线程分配内存和创建页表,因为线程与进程共用同一个地址空间。所以,创建线程比创建进程更快。

线程的响应速度更快

一个进程只有一个执行路径。当某个进程被挂起时,帮个进程都将停止执行。相反,当某个线程被挂起时,同一进程中的其他线程可以继续执行。

线程更适合井行计算

并行计算的目标是使用多个执行路径更快地解决间题。基于分治原则(如二叉树查找和快速排序等)的算法经常表现出高度的并行性,可通过使用并行或并发执行来提高计算速度。

线程的缺点

由于地址空间共享,线程需要来自用户的明确同步

许多库函数可能对线程不安全,例如strtok();

在单CPU系统上,使用线程解决间题实际上要比使用顺序程序慢,这是由在运行时创建线程和切换上下文的系统开销造成的。

进程和线程对比

一个程序至少有一个进程,一个进程至少有一个线程。
线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率 线线程不能够独立执行,必须依存在进程中。
可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人。

线程操作

线程的执行轨迹与进程类似。
线程可在内核模式或用户模式下执行。
在用户模式下,线程在进程的相同地址空间中执行,但每个线程都有自己的执行堆栈。
线程是独立的执行单元,可根据操作系统内核的调度策略,对内核进行系统调用,变为桂起激活以继续执行等。

attr参数使用:

定义一个pthread展性变址pt:hread_attr_tattr。
用pthread_attr_init(&attr)初始化屈性变掀。
设置属性变垃并在pthread_ create()调用中使用。
必要时,通过pthread_attr_destroy(&attr)释放attr资源。

线程ID

线程ID是一种不透明的数据类型,取决于实现悄况。因此,不应该直接比较线程ID。如果需要,可以使用pthread_ equal()函数对它们进行比较。

int pthread_equal (pthread_t tl, pthread_t t2);

线程终止

线程函数结束后,线程即终止。或者,线程可以调用函数以下函数来进行显示终止。

int pthraad_axit {void *status)

线程连接

一个线程可以等待另一个线程的终止, 通过:

int pthread_join (pthread_t thread, void **status__ptr);
终止线程的退出状态以status_ptr返回。

简单编程:利用线程计算矩阵的和

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define N 4
int A[N][N],sum[N];
void *func(void *arg)
{
        int j,row ;
        pthread_t tid = pthread_self();
        row = (int)arg;
        printf("Thread %d [%lu] computes sum of row %d\n",row,tid,row);
        for(j=0;j<N; j++)
                sum[row] += A[row][j];
        printf("Thread %d [%lu] done:sum [%d] =%d\n",row,tid,row,sum[row]);
        pthread_exit ((void*)0);
}
        int main(int argc, char *argv[])
{
        pthread_t thread[N];
        int i,j,r,total = 0;
        void *status;
        printf("Main: initialize A matrix\n");
        for(i=0; i<N;i++){
                sum[i] = 0;
                for(j=0;j<N;j++){
                        A[i][j]=i*N+j+1;
                        printf("%4d ",A[i][j]);
                }
                printf( "\n" );
        }
        printf ("Main: create %d threads\n",N);
        for(i=0;i<N;i++) {
                pthread_create(&thread[i],NULL,func,(void *)i);
        }
        printf("Main: try to join with thread\n");
        for(i=0; i<N; i++) {
                pthread_join(thread[i],&status);
                printf("Main: joined with %d [%lu]: status=%d\n",i,thread[i],
                                (int)status);
        }
        printf("Main: compute and print total sum:");
        for(i=0;i<N;i++)
                total += sum[i];
        printf ("tatal = %d\n",total );
        pthread_exit(NULL);
}

简单编程:用线程快速排序

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
typedef struct{
	int upperbound;
	int lowerbound;
}PARM;
#define N 10
int a[N]={5,1,6,4,7,2,9,8,0,3};// unsorted data
int print(){//print current a[] contents
	int i;
	printf("[");
	for(i=0;i<N;i++)
		printf("%d ",a[i]);
	printf("]\n");
}
void *Qsort(void *aptr){
	PARM *ap, aleft, aright;
	int pivot, pivotIndex,left, right,temp;
	int upperbound,lowerbound;
	pthread_t me,leftThread,rightThread;
	me = pthread_self();
	ap =(PARM *)aptr;
	upperbound = ap->upperbound;
	lowerbound = ap->lowerbound;
	pivot = a[upperbound];//pick low pivot value
	left = lowerbound - 1;//scan index from left side
	right = upperbound;//scan index from right side
	if(lowerbound >= upperbound)
		pthread_exit (NULL);
	while(left < right){//partition loop
		do{left++;} while (a[left] < pivot);
		do{right--;}while(a[right]>pivot);
		if (left < right ) {
			temp = a[left];a[left]=a[right];a[right] = temp;
		}
	}
	print();
	pivotIndex = left;//put pivot back
	temp = a[pivotIndex] ;
	a[pivotIndex] = pivot;
	a[upperbound] = temp;
	//start the "recursive threads"
	aleft.upperbound = pivotIndex - 1;
	aleft.lowerbound = lowerbound;
	aright.upperbound = upperbound;
	aright.lowerbound = pivotIndex + 1;
	printf("%lu: create left and right threadsln", me) ;
	pthread_create(&leftThread,NULL,Qsort,(void * )&aleft);
	pthread_create(&rightThread,NULL,Qsort,(void *)&aright);
	//wait for left and right threads to finish
	pthread_join(leftThread,NULL);
	pthread_join(rightThread, NULL);
	printf("%lu: joined with left & right threads\n",me);
}
	int main(int argc, char *argv[]){
	PARM arg;
	int i, *array;
	pthread_t me,thread;
	me = pthread_self( );
	printf("main %lu: unsorted array = ", me);
	print( ) ;
	arg.upperbound = N-1;
	arg. lowerbound = 0 ;
	printf("main %lu create a thread to do QS\n" , me);
	pthread_create(&thread,NULL,Qsort,(void * ) &arg);//wait for Qs thread to finish
	pthread_join(thread,NULL);
	printf ("main %lu sorted array = ", me);
	print () ;
}

线程同步

当多个线程试图修改同一共享变量或数据结构时,如果修改结果取决于线程的执行顺序,则称之为竞态条件
在并发程序中,绝不能有竞态条件。否则,觉果可能不一致。
并发执行的线程通常需要相互协作,防止出现竞态条件,线程需要同步。

互斥量

在 Pthread中,锁被称为互斥量,意思是相互排斥。互斥变呈是用 ptbread_mutex_t 类型声明的在使,用之前必须对它们进行初始化。有两种方法可以初始化互斥址。

静态方法:

pthreaa—mutex_t m = PTHREAD_MUTEX_INITIALIZER;
定义互斥量 m, 并使用默认属性对其进行初始化。

动态方法,使用 pthread_ mutex _init()函数

条件变量

条件变量:作为锁,互斥量仅用于确保线程只能互斥地访间临界区中的共享数据对象。在Pthread中,使用类型pthread_cond_t来声明条件变拉,而且必须 在使用前进行初始化。与互斥变量一样,条件变量也可以通过两种方法进行初始化。

静态方法:

pthread_cond_t con= PTHREAD_COND_INITIALIZER;
定义一个条件变量con,并使用默认属性对其进行初始化。

动态方法:使用pthread_cond_init()函数,可通过attr参数设置条件变量。

死锁预防

死锁是一种状态,在这种状态下,许多执行实体相互等待,因此都无法继续下去。

防止死锁的发生只需破坏死锁产生的四个必要条件之一即可。

破坏互斥条件
破坏不剥夺条件
破坏请求和保持条件
破坏循环等待条件
生产者-消费者问题
该问题需要注意的几点:

在缓冲区为空时,消费者不能再进行消费
在缓冲区为满时,生产者不能再进行生产
在一个线程进行生产或消费时,其余线程不能再进行生产或消费等操作,即保持线程间的同步
注意条件变量与互斥锁的顺序

简单编程:生产者-消费者

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NBUF 5
#define N 10
int buf [NBUF];
int head, tail;
int data;
pthread_mutex_t mutex;
pthread_cond_t empty,full;
int init(){
	head = tail = data = 0;
	pthread_mutex_init(&mutex,NULL);
	pthread_cond_init(&full,NULL);
	pthread_cond_init(&empty,NULL);
}
void *producer (){
	int i;
	pthread_t me = pthread_self() ;
	for (i=0; i<N; i++){ 
		pthread_mutex_lock(&mutex);
		if(data == NBUF) {
			printf("producer %lu: all bufs FULL: wait\n",me);
			pthread_cond_wait(&empty, &mutex);
		}
		buf[head++] = i+1;
		head %=NBUF;
		data++;
		printf("producer %lu: data=%d value=%d\n",me,data,i+1);
		pthread_mutex_unlock(&mutex);
		pthread_cond_signal(&full);
	}
	printf("producer %lu: exit \n",me);
}
void *consumer(){
	int i, c;
	pthread_t me = pthread_self();
	for(i=0;i<N;i++){
		pthread_mutex_lock(&mutex);
		if(data == 0){
			printf ("consumer %lu: all bufs EMPTY : wait\n",me);
			pthread_cond_wait(&full,&mutex);
		}
    	c=buf[tail++];
		tail%=NBUF;
		data--;
		printf("consumer %lu: value=%d\n",me,c);
		pthread_mutex_unlock(&mutex);
		pthread_cond_signal(&empty);
	}
	printf("consumer %lu: exit\n",me);
}
int main(){
	pthread_t pro, con;
	init();
	printf("main: create producer and consumer threads \n");
	pthread_create(&pro,NULL, producer,NULL);
	pthread_create (&con,NULL,consumer,NULL);
	printf("main: join with threads\n");
	pthread_join(pro,NULL);
	pthread_join(con,NULL);
	printf("main: exit\n");
}

实践与截图

生产者消费者

代码:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NBUF 5
#define N 10
int buf [NBUF];
int head, tail;
int data;
pthread_mutex_t mutex;
pthread_cond_t empty,full;
int init(){
	head = tail = data = 0;
	pthread_mutex_init(&mutex,NULL);
	pthread_cond_init(&full,NULL);
	pthread_cond_init(&empty,NULL);
}
void *producer (){
	int i;
	pthread_t me = pthread_self() ;
	for (i=0; i<N; i++){ 
		pthread_mutex_lock(&mutex);
		if(data == NBUF) {
			printf("producer %lu: all bufs FULL: wait\n",me);
			pthread_cond_wait(&empty, &mutex);
		}
		buf[head++] = i+1;
		head %=NBUF;
		data++;
		printf("producer %lu: data=%d value=%d\n",me,data,i+1);
		pthread_mutex_unlock(&mutex);
		pthread_cond_signal(&full);
	}
	printf("producer %lu: exit \n",me);
}
void *consumer(){
	int i, c;
	pthread_t me = pthread_self();
	for(i=0;i<N;i++){
		pthread_mutex_lock(&mutex);
		if(data == 0){
			printf ("consumer %lu: all bufs EMPTY : wait\n",me);
			pthread_cond_wait(&full,&mutex);
		}
    	c=buf[tail++];
		tail%=NBUF;
		data--;
		printf("consumer %lu: value=%d\n",me,c);
		pthread_mutex_unlock(&mutex);
		pthread_cond_signal(&empty);
	}
	printf("consumer %lu: exit\n",me);
}
int main(){
	pthread_t pro, con;
	init();
	printf("main: create producer and consumer threads \n");
	pthread_create(&pro,NULL, producer,NULL);
	pthread_create (&con,NULL,consumer,NULL);
	printf("main: join with threads\n");
	pthread_join(pro,NULL);
	pthread_join(con,NULL);
	printf("main: exit\n");
}

截图:

用线程实现快速排序

代码:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
typedef struct{
	int upperbound;
	int lowerbound;
}PARM;
#define N 10
int a[N]={5,1,6,4,7,2,9,8,0,3};// unsorted data
int print(){//print current a[] contents
	int i;
	printf("[");
	for(i=0;i<N;i++)
		printf("%d ",a[i]);
	printf("]\n");
}
void *Qsort(void *aptr){
	PARM *ap, aleft, aright;
	int pivot, pivotIndex,left, right,temp;
	int upperbound,lowerbound;
	pthread_t me,leftThread,rightThread;
	me = pthread_self();
	ap =(PARM *)aptr;
	upperbound = ap->upperbound;
	lowerbound = ap->lowerbound;
	pivot = a[upperbound];//pick low pivot value
	left = lowerbound - 1;//scan index from left side
	right = upperbound;//scan index from right side
	if(lowerbound >= upperbound)
		pthread_exit (NULL);
	while(left < right){//partition loop
		do{left++;} while (a[left] < pivot);
		do{right--;}while(a[right]>pivot);
		if (left < right ) {
			temp = a[left];a[left]=a[right];a[right] = temp;
		}
	}
	print();
	pivotIndex = left;//put pivot back
	temp = a[pivotIndex] ;
	a[pivotIndex] = pivot;
	a[upperbound] = temp;
	//start the "recursive threads"
	aleft.upperbound = pivotIndex - 1;
	aleft.lowerbound = lowerbound;
	aright.upperbound = upperbound;
	aright.lowerbound = pivotIndex + 1;
	printf("%lu: create left and right threadsln", me) ;
	pthread_create(&leftThread,NULL,Qsort,(void * )&aleft);
	pthread_create(&rightThread,NULL,Qsort,(void *)&aright);
	//wait for left and right threads to finish
	pthread_join(leftThread,NULL);
	pthread_join(rightThread, NULL);
	printf("%lu: joined with left & right threads\n",me);
}
	int main(int argc, char *argv[]){
	PARM arg;
	int i, *array;
	pthread_t me,thread;
	me = pthread_self( );
	printf("main %lu: unsorted array = ", me);
	print( ) ;
	arg.upperbound = N-1;
	arg. lowerbound = 0 ;
	printf("main %lu create a thread to do QS\n" , me);
	pthread_create(&thread,NULL,Qsort,(void * ) &arg);//wait for Qs thread to finish
	pthread_join(thread,NULL);
	printf ("main %lu sorted array = ", me);
	print () ;
}

截图:

标签:right,int,吴龙灿,线程,20201306,pthread,NULL,第四章,left
From: https://www.cnblogs.com/wulongcan20201306/p/16794546.html

相关文章

  • LINUX第四章——并发编程
    第四章Linux学习笔记并行计算顺序算法与并行计算并行性和并发性并行算法只识别可并行执行的任务。CPU系统中,并发性是通过多任务处理来实现的线程线程的原理某进程同......
  • 第四章学习笔记
    第四章并发编程一、知识点归纳4.1并行计算导论4.1.1顺序算法与并行算法在描述顺序算法中,常用一个begin-end代码块列出算法。begin-end代码块中的顺序算法可能包......
  • 《Unix/Linux系统编程》第四章学习笔记 20201209戴骏
    第四章并发编程知识点归纳1、并行计算导论在早期,大多数计算机只有一个处理组件,称为处理器或中央处理器(CPU)。受这种硬件条件的限制,计算机程序通常是为串行计算编写的。......
  • 20201318李兴昕第四章学习笔记
    第四章:并发编程知识点归纳总结:本章论述了并发编程,介绍了并行计算的概念,指岀了并行计算的重要性;比较了顺序算法与并行算法,以及并行性与并发性;解释了线程的原理及其相对......
  • 20201317 第四章学习总结 LYX
    第四章linux并发编程核心思路本章论述了并发编程,介绍了并行计算的概念。指出了并行计算的重要性∶比较了顺序算法与并行算法,以及并行性与并发性;解释了线程的原理及其相......
  • 《信息安全与设计》第四章学习笔记
    第4章并发编程知识点归纳并行性和并发性1.真正的并行执行只能在多个处理组件的系统中实现,比如多处理器或多核系统。2.在单CPU系统中,并发性是通过多任务处理实现的。......
  • 第四章学习笔记——并发编程(20201217王菁)
    并发编程  在早期,大多数计算机只用一个处理组件,称为处理器或中央处理器(CPU)。并行算法是一种计算方法,它会尝试使用多个执行并行算法的处理器更好地解决问题。并行计算......
  • IT江湖的故事 | 第四章-项目不成熟谎称秘密 有人动机空手套方案
            销售老张、销售小赵的售前搭档是老刘,合作多年形成了默契,这是关于他们的故事。第一回初次沟通  直接要方案            某天某刻,客户老王......
  • 第四章 数组和函数
    JavaScript数组1-数组1.1数组的概念数组可以把一组相关的数据一起存放,并提供方便的访问(获取)方式。数组是指一组数据的集合,其中的每个数据被称作元素,在数组中可以......
  • 第四章 序列的应用
    实例01:输出每日一帖 在IDLE中创建一个名称为tips.py的文件,然后在该文件中导入日期时间类,然后定义一个列表(保存7条励志文字作为每日一帖的内容),再获取当前的星期,最......