首页 > 其他分享 >sentinel中StatisticSlot数据采集的原理

sentinel中StatisticSlot数据采集的原理

时间:2024-03-24 20:03:16浏览次数:39  
标签:窗口 请求 StatisticSlot 18 样本 采集 时间 sentinel windowStart

StatisticSlot数据采集的原理

时间窗口

固定窗口

在固定的时间窗口内,可以允许固定数量的请求进入;超过数量就拒绝或者排队,等下一个时间段进入, 如下图

  • 时间窗长度划分为1秒

  • 单个时间窗的请求阈值为3
    在这里插入图片描述

上述存在一个问题, 假如9:18:04:333-9:18:05:000产生了2个请求, 9:18:05:000-9:18:05:333产生了3个请求, 那么也就是说9:18:04:333-9:18:05:333这一秒内产生5个请求, 正常来说这里已经超出了阈值
在这里插入图片描述

但是由于是固定窗口, 也就是这里只能9:18:04:000-9:18:05:000, 9:18:05:000-9:18:06:000这样子去处理, 所以实际上打达不到我们的要求的

滑动窗口

滑动窗口诞生的原因就在于解决固定窗口那个致命的问题,为什么我说固定窗口的问题是致命的?因为我们系统限流的目的是要在任意时间都能应对突然的流量暴增,也就是说我的系统最大在1s内能够处理请求3,但如果使用固定窗口的算法,就会造成在9:18:04:333-9:18:05:333之间的请求无法限流,从而严重的话会导致服务雪崩

滑动窗口如下图

  • 时间窗长度划分为1秒, 并且是滑动的

  • 单个时间窗的请求阈值为3
    在这里插入图片描述

如果要判断请求是否能正常通过, 那么就要把当前时间点作为终点, 统计前1秒内的请求数, 判断请求数是否达到阈值, 如果没有达到阈值就放行, 如果达到阈值了就通过

上边的问题是是解决了, 但是存在一些性能问题, 假设请求落在9:18:05:333, 往前移动1s距离, 那么就是以9:18:04:333作为起点, 统计9:18:04:333-9:18:05:333之间的请求数, 当请求落在9:18:05:633, 那么就要统计9:18:04:633-9:18:05:633之间的请求数, 发现9:18:04:633-9:18:05:333之间的数据上一次的时候就出现过了, 但是这里又得重新统计, 也就说每移动一次窗口, 那么都要重新统计重复区域的请求数量, 从而导致浪费大量系统资源, 如下图, 黄色区域为重复统计区域
在这里插入图片描述

出现了问题, 就要解决

我们需要引入更加细粒度化的计算, 也就是说需要增加子时间窗口, 那么这里引入的子时间窗口, 我们称为样本窗口

  1. 样本窗口的长度必须小于滑动窗口长度,因为如果样本窗口等于滑动窗口长度的话,就和固定窗口没啥区别了
  2. 通常情况下滑动窗口的长度是样本窗口的整数倍,比如:10 * 样本窗口 = 1 个滑动窗口
  3. 每个样本窗口在到达终点时间时,会统计本样本窗口中的流量数据并且记录下来,用于复用
  4. 当一个请求到达时,系统会首先统计当前请求时间点所在的样本窗口内的流量数据。接着,系统会检查在当前请求时间点之前的滑动窗口中的样本窗口,将它们的统计数据进行求和。如果这个求和值没有超出事先设定的阈值,请求将会被允许通过。然而,如果求和值超过了阈值,系统会触发限流措施,拒绝该请求的访问

假设

  • 时间窗长度为1s
  • 一个时间窗内包含三个样本窗口
  • 阈值为30

那么10:00:00:000-10:00:01:000内请求数为10 + 5 + 10 = 25 < 30, 所以大胆放行
在这里插入图片描述

那么10:00:00:333-10:00:01:333内请求数为5 + 10 + 7= 22 < 30, 继续放行
在这里插入图片描述

那么10:00:00:666-10:00:01:666内请求数为10 + 7 + 30= 47 > 30, 这里就要限流了

在这里插入图片描述

限流
在这里插入图片描述

那么10:00:01:000-10:00:02:000内请求数为7 + 30 + 7= 40 > 30, 这里就要限流了
在这里插入图片描述

那么10:00:01:333-10:00:02:333内请求数为30 + 7 + 34 = 71 > 30, 这里就要限流了
在这里插入图片描述

ps: 样本窗口的数量影响着滑动窗口算法的精度,依然有时间片的概念,无法根本解决临界点问题

数据统计

底层数据结构

StatisticSlot.entry() 中的 node.addPassRequest(count)方法

public void addPassRequest(int count) {
    // 增加当前入口的DefaultNode中的数据
    super.addPassRequest(count);
    // 增加当前资源的 ClusterNode 中的全局统计数据
    this.clusterNode.addPassRequest(count);
}


@Override
public void addPassRequest(int count) {
    // 为滑动计数器增加本次请求
    rollingCounterInSecond.addPass(count);
    rollingCounterInMinute.addPass(count);
}

rollingCounterInSecond 就是一个真正保存数据的计量器,数据类型为 ArrayMetric,也就是说 Sentinel 在统计数据上采取的是一个名为 ArrayMetric 的 Java 类,如下

// 定义了一个使用数组保存数据的计量器,样本窗口数量为2(SAMPLE_COUNT),时间窗口长度为1000ms(INTERVAL)
private transient volatile Metric rollingCounterInSecond = new ArrayMetric(SampleCountProperty.SAMPLE_COUNT, IntervalProperty.INTERVAL);

那么 ArrayMetric 类又是如何存储数据的呢?

// 这是一个使用数组保存数据的计量器类,数据就保存在data中
public class ArrayMetric implements Metric {
    // 真正存储数据的地方
    private final LeapArray<MetricBucket> data;
}


public abstract class LeapArray<T> {
    // 样本窗口的长度
    protected int windowLengthInMs;
    // 一个时间窗口包含的样本窗口数量,公式 intervalInMs / windowLengthInMs,也就是时间窗口长度 / 样本窗口长度
    protected int sampleCount;
    // 时间窗口长度
    protected int intervalInMs;
    // 也是时间窗口长度,只是单位为s
    private double intervalInSecond;

    // WindowWrap : 样本窗口类
    // 这是一个数组
    // 这里的泛型T实际类型为 MetricBucket
    protected final AtomicReferenceArray<WindowWrap<T>> array;
}

LeapArray 类似于一个样本窗口管理类,而真正的样本窗口类是 WindowWrap<T>,对于样本窗口的概念我们肯定不陌生了,其包含:单个样本窗口的长度、样本窗口的开始时间戳,如下所示:

// 样本窗口类,泛型T为MetricBucket
public class WindowWrap<T> {
    // 单个样本窗口的长度
    private final long windowLengthInMs;

    // 样本窗口的起始时间戳
    private long windowStart;

    // 当前样本窗口的统计数据,类型为 MetricBucket
    private T value;
}

关于泛型真实类型为 MetricBucket 也很简单,可以从前面代码 ArrayMetric#LeapArray<MetricBucket> 得出。接下来就看真实类型 MetricBucket 是个什么东西

// 统计数据的封装类
public class MetricBucket {
    // 统计的数据真实存放在LongAdder里
    // 但是为什么要数组?直接用LongAdder+1不就行了?因为统计的数据是多维度的,这些维度类型在MetricEvent枚举中。
    private final LongAdder[] counters;

    private volatile long minRt;
}

这里有一个巧妙的设计,就是为什么用LongAdder[]而不是用LongAdder,正是因为统计的数据是多维度的,比如:统计通过的 QPS、统计失败的 QPS 等,因此设计成数组,我们就可以将不同类型放到不同的数组下标里

关系如下图
在这里插入图片描述

addPass()方法

@Override
public void addPassRequest(int count) {
    // 为滑动计数器增加本次请求
    rollingCounterInSecond.addPass(count);
    rollingCounterInMinute.addPass(count);
}

public void addPass(int count) {
    // 获取当前时间点所在的样本窗口
    WindowWrap<MetricBucket> wrap = data.currentWindow();
    // 将当前请求的计数量添加到当前样本窗口的统计数据中
    wrap.value().addPass(count);
}

其主要分为三部分:

  1. 当前时间所在的样本窗口如果还没创建,则需要初始化。
  2. 若当前样本窗口的起始时间与计算出的样本窗口起始时间相同,则说明这两个是同一个样本窗口,直接获取就行。
  3. 若当前样本窗口的起始时间大于计算出的样本窗口起始时间,说明计算出来的样本窗口已经过时了,需要将原来的样本窗口替换为新的样本窗口。数组的环形数组,不是无限长的,比如存 1s,1000 个样本窗口,那么下 1s 的 1000 个时间窗口会覆盖上一秒的。
  4. 若当前样本窗口的起始时间小于计算出的样本窗口起始时间,一般不会出现,因为时间不会倒流,除非人为修改系统时间导致时钟回拨
public WindowWrap<T> currentWindow(long timeMillis) {
    if (timeMillis < 0) {
        return null;
    }

    // 计算当前时间所在的样本窗口index,也就是样本窗口的下标,即在计算数组LeapArray中的下标
    int idx = calculateTimeIdx(timeMillis);
    // Calculate current bucket start time.
    // 计算当前样本窗口的开始时间点
    long windowStart = calculateWindowStart(timeMillis);

    while (true) {
        // 获取到当前时间所在的样本窗口
        WindowWrap<T> old = array.get(idx);
        // 代表当前时间所在的样本窗口没有,需要创建
        if (old == null) {
            /*
             *     B0       B1      B2    NULL      B4
             * ||_______|_______|_______|_______|_______||___
             * 200     400     600     800     1000    1200  timestamp
             *                             ^
             *                          time=888
             *            		bucket为空, 所以新建并更新
             *
             * 如果旧的bucket不存在,那么我们在windowStart创建一个新的bucket,然后尝试通过CAS操作
             * 更新循环数组。只有一个线程可以成功更新,而其他线程争夺这个时间片
             */
            // 创建一个时间窗口
            WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
            // CAS 将新建窗口放入LeapArray
            if (array.compareAndSet(idx, null, window)) {
                // 更新成功,返回创建的bucket
                return window;
            } else {
                // 获取锁失败, 线程将放弃其时间片以等待可用的bucket
                Thread.yield();
            }
        } else if (windowStart == old.windowStart()) { // 若当前样本窗口的起始时间与计算出的样本窗口起始时间相同,则说明这两个是同一个样本窗口,直接获取就行
            /*
             *     B0       B1      B2     B3      B4
             * ||_______|_______|_______|_______|_______||___
             * 200     400     600     800     1000    1200  timestamp
             *                             ^
             *                          time=888
             *            桶3的起始时间: 800,所以它是最新的
             *
             * 如果当前windowStart等于旧bucket的开始时间戳,则表示时间在bucket内,因此直接返回bucket
             */
            return old;
        } else if (windowStart > old.windowStart()) { // 若当前样本窗口的起始时间大于计算出的样本窗口起始时间。说明计算出来的样本窗口已经过时了,需要将原来的样本窗口替换为新的样本窗口。 数组的环形数组,不是无限长的,比如存1s,1000个样本窗口,那么下1s的1000个时间窗口会覆盖上一秒的
            /*
             *   (old)
             *             B0       B1      B2    NULL      B4
             * |_______||_______|_______|_______|_______|_______||___
             * ...    1200     1400    1600    1800    2000    2200  timestamp
             *                              ^
             *                           time=1676
             *          Bucket 2的startTime: 400,已弃用,应重置
             *
             * 如果旧bucket的开始时间戳落后于当前时间,则表示该bucket已弃用。我们必须将bucket重置为当前的windowStart。请注意,重置和清理操作很难是原子的,所以我们需要一个更新锁来保证bucket更新的正确性
             *
             * 更新锁是有条件的(小范围),只有当桶被弃用时才会生效,所以在大多数情况下它不会导致性能损失
             */
            if (updateLock.tryLock()) {
                try {
                    // 成功获取更新锁,现在我们重置bucket
                    // 替换老的样本窗口
                    return resetWindowTo(old, windowStart);
                } finally {
                    updateLock.unlock();
                }
            } else {
                // 获取锁失败,线程将放弃其时间片以等待可用的bucket
                Thread.yield();
            }
        } else if (windowStart < old.windowStart()) { // 若当前样本窗口的起始时间小于计算出的样本窗口起始时间,一般不会出现,因为时间不会倒流,除非人为修改系统时间(即时钟回拨)
            return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
        }
    }
}

流程图如下
在这里插入图片描述

上述使用到的数组是一个环形数组, 不是我们所谓的普通数组, 目地就是复用, 节省内存

环形数组的工作原理

现有环形数组, 长度为8, 目前已经用了6个位置
在这里插入图片描述

继续添加元素

在这里插入图片描述

继续添加元素
在这里插入图片描述

目前元素已经满了, 接着添加, 发现它把原来存在元素1的位置替换了, 换成了9
在这里插入图片描述

继续添加, 同理可得, 那么元素应该就应该替换到元素2这个位置
在这里插入图片描述

上边就是环形数组的工作原理

currentWindow的图文分析
old == null

这个表示环形数组都没有, 那么就创建一个环形数组, 并将元素设置进去, 这里就不画图了

windowStart > old.windowStart()

在这里插入图片描述

windowStart == old.windowStart()

在这里插入图片描述

windowStart < old.windowStart()

在这里插入图片描述

参考资料

通关 Sentinel 流量治理框架 - 编程界的小學生

10张图带你彻底搞懂限流、熔断、服务降级

分布式服务限流实战,已经为你排好坑了

服务限流详解

新来个技术总监,把限流实现的那叫一个优雅,佩服!

接口限流算法总结

标签:窗口,请求,StatisticSlot,18,样本,采集,时间,sentinel,windowStart
From: https://blog.csdn.net/weixin_51918722/article/details/136991054

相关文章

  • VisionPro 图像采集的两种方式
    1.通过调用事先保存的CogAcqFifoTool工具(.vpp)获取图像a.配置相机及网络(GigEConfigurationTool)b.在VisionProQuickBuild中添加vs项目中通过代码运行相机采集2.通过实现IcogAcqFifo接口获取图像......
  • 【GUI软件开发】小红书评论采集:自动采集1w多条,含二级评论!
    一、爬取目标用python开发的爬虫采集软件,可自动抓取小红书评论区,并且含二级评论。方便不懂编程代码的小白使用,无需安装python、无需改代码,双击打开exe即用!1.1效果截图软件界面截图:结果截图1:结果截图2:结果截图3:1.2演示视频软件运行演示:【软件演示】小红书评论采集工......
  • 基于FPGA温度采集的方案
    1.使用温度传感器与FPGA连接:FPGA可以通过接口与外部温度传感器进行通信,实时读取温度数据并进行处理。其中一种常用的温度传感器是LM75系列传感器,如LM75A、LM75B等。这些传感器具有高精度、温度测量范围广、低功耗等特点。                 ......
  • 关于“吉吉巳资源采集站点”的分享,我想说......
    前段时间我分享了一个影视资源采集站,惹来不少“非议”。本来没怎么当回事,可今天无意看了下评论,发现居然还有人出口成脏,真是无语了,为此觉得有必要向那些无聊的“朋友”说点什么......不知道原由的朋友可以先看下我之前分享的这资源采集站:https://blog.csdn.net/YUMENG_FLY/art......
  • 蓝桥杯嵌入式(STM32G431RBT6)——扩展板——IC采集频率(PUSL1、PUSL2)
    1.原理图2.Cubemx配置3.代码(1)timer.c#include"timer.h"unsignedintPUSL1_frq_T2CH2=0;unsignedintPUSL2_frq_T2CH3=0;uint32_tuwIC2Value1_T2CH2=0;//第一次捕获上升沿的时间uint32_tuwIC2Value2_T2CH2=0;//第二次捕获上升沿的时间uint32_tu......
  • Python实战:爬取小红书-采集笔记详情
    上一篇文章发出后,有读者问能不能爬到小红书笔记详情数据,今天他来了。一、先看效果程序输入:在一个txt文件内粘贴要爬取的笔记链接,每行放1个链接。程序输出:输出是一个所有笔记详情数据的excel表格,包含”采集日期、作者、笔记标题、发布日期、IP属地、点赞数、收藏数、......
  • Python爬虫-数据采集和处理
    文章目录数据数据类型数据分析过程数据采集数据采集源数据采集方法数据清洗清洗数据数据集成数据转换数据脱敏数据《春秋左传集解》云:“事大大其绳,事小小其绳。”体现了早期人类将事情的“大小”这一性质抽象到“绳结大小”这一符号上从而产生数据的过程。数据......
  • tomcat采集阿里云slb真实客户端ip
    tomcat采集阿里云slb真实客户端ip......
  • 【GUI界面软件】快手评论区采集:自动采集10000多条,含二级评论、展开评论!
    目录一、背景说明1.1效果演示1.2演示视频1.3软件说明二、代码讲解2.1爬虫采集模块2.2软件界面模块2.3日志模块三、获取源码及软件一、背景说明1.1效果演示您好!我是@马哥python说,一名10年程序猿。我用python开发了一个爬虫采集软件,可自动抓取快手评论数据,并且含二级评论......
  • Python爬虫实战系列4:天眼查公司工商信息采集
    Python爬虫实战系列1:博客园cnblogs热门新闻采集Python爬虫实战系列2:虎嗅网24小时热门新闻采集Python爬虫实战系列3:今日BBNews编程新闻采集Python爬虫实战系列4:天眼查公司工商信息采集一、分析页面打开天眼查网址https://www.tianyancha.com/,随便搜索一个公司【比亚迪】查......