首页 > 其他分享 >SLAM代码之单目建图

SLAM代码之单目建图

时间:2022-10-14 12:46:27浏览次数:74  
标签:curr pt double depth 建图 SLAM const 单目 ref

思路

  • 第一帧为参考帧
  • 对后面每一帧
    • 找到极限方向
      • 进行极线搜索
      • 找出NCC最高的
    • 高斯深度滤波
      • 计算不确定度
      • 高斯融合

dense_mapping.cpp

#include<iostream>
#include<vector>
#include<fstream>

using namespace std;

#include<boost/timer.hpp>

#include<sophus/se3.hpp>

using Sophus::SE3d;

#include<Eigen/Core>
#include<Eigen/Geometry>

using namespace Eigen;

#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>

using namespace cv;

/**********************************************
* 本程序演示了单目相机在已知轨迹下的稠密深度估计
* 使用极线搜索 + NCC 匹配的方式,与书本的 12.2 节对应
***********************************************/

//parameters
const int boarder=20;       //边缘宽度
const int width=640;        //图像宽度
const int height=480;       //图像高度
const double fx=482.1f;    //相机内参
const double fy=-480.0f;
const double cx=319.5f;
const double cy=239.5f;
const int ncc_window_size=3;    //ncc取的窗口半宽度
const int ncc_area=(2*ncc_window_size+1)*(2*ncc_window_size+1);//NCC窗口面积
const double min_cov=0.1;   //收敛判定:最小方差
const double max_cov=10;    //发散判定:最大方差

///从REMODE数据集读取数据
bool readDatasetFiles(
    const string path,
    vector<string> &color_image_files,
    vector<SE3d> &poses,
    cv::Mat &ref_depth
);

/**
*根据新的图像更新深度估计
*@param ref             参考图像
*@param curr            当前图像
*@param T_C_R           参考图像到当前图像的位姿
*@param depth           深度均值
*@param dept_cov2       深度方差
*@return                是否成功 
**/
bool update(
    const Mat &ref,
    const Mat &curr,
    const SE3d &T_C_R,
    Mat &depth,
    Mat &depth_cov2
);
/**
 * @brief  极线搜索
 * @param  ref: 参考图像
 * @param  curr: 当前图像
 * @param  T_C_R: 位姿
 * @param  pt_ref: 参考图像中点的位置
 * @param  depth_mu: 深度均值
 * @param  depth_cov: 深度方差
 * @param  pt_curr: 当前点
 * @param  epipolar_direction:极线方向 
 * @retval 是否成功
 */
bool epipolarSearch(
    const Mat &ref,
    const Mat &curr,
    const SE3d &T_C_R,
    const Vector2d &pt_ref,
    const double &depth_mu,
    const double &depth_cov,
    Vector2d &pt_curr,
    Vector2d &epipolar_direction
);
/**
 * @brief  更新深度滤波器 
 * @param  pt_ref: 参考图像点
 * @param  pt_curr: 当前图像点
 * @param  T_C_R: 位姿
 * @param  epipolar_direction: 级线方向
 * @param  depth: 深度均值
 * @param  depth_cov2: 深度方差
 * @retval 是否成功
 */
bool updateDepthFilter(
    const Vector2d &pt_ref,
    const Vector2d &pt_curr,
    const SE3d &T_C_R,
    const Vector2d &epipolar_direction,
    Mat &depth,
    Mat &depth_cov2
);
/**
 * 计算 NCC 评分
 * @param ref       参考图像
 * @param curr      当前图像
 * @param pt_ref    参考点
 * @param pt_curr   当前点
 * @retval          NCC评分
 */
double NCC(const Mat &ref, const Mat &curr, const Vector2d &pt_ref, const Vector2d &pt_curr);
// 双线性灰度插值
inline double getBilinearInterpolatedValue(const Mat &img, const Vector2d &pt) {
    uchar *d = &img.data[int(pt(1, 0)) * img.step + int(pt(0, 0))];
    double xx = pt(0, 0) - floor(pt(0, 0));
    double yy = pt(1, 0) - floor(pt(1, 0));
    return ((1 - xx) * (1 - yy) * double(d[0]) +
            xx * (1 - yy) * double(d[1]) +
            (1 - xx) * yy * double(d[img.step]) +
            xx * yy * double(d[img.step + 1])) / 255.0;
}
// ------------------------------------------------------------------
// 一些小工具
// 显示估计的深度图
void plotDepth(const Mat &depth_truth, const Mat &depth_estimate);
//像素到相机坐标系
inline Vector3d px2cam(const Vector2d px){
    return Vector3d(
        (px(0,0)-cx)/fx,
        (px(1,0)-cy)/fy,
        1
    );
}
//相机到像素
inline Vector2d cam2px(const Vector3d p_cam){
    return Vector2d(
        (p_cam(0,0)*fx/p_cam(2,0)+cx),
        (p_cam(1,0)*fy/p_cam(2,0)+cy)
    );
}

// 检测一个点是否在图像边框内
inline bool inside(const Vector2d &pt) {
    return pt(0, 0) >= boarder && pt(1, 0) >= boarder
           && pt(0, 0) + boarder < width && pt(1, 0) + boarder <= height;
}
// 显示极线匹配
void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr);

// 显示极线
void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr,
                      const Vector2d &px_max_curr);

/// 评测深度估计
void evaludateDepth(const Mat &depth_truth, const Mat &depth_estimate);
// ------------------------------------------------------------------

int main(int argc,char **argv){
    if(argc!=2){
        cout<<"Usage:dense_mapping path_to_test_dataset"<<endl;
        return -1;
    }

    //从数据集读取数据
    vector<string> color_image_files;
    vector<SE3d>pose_TWC;
    Mat ref_depth;
    bool ret=readDatasetFiles(argv[1],color_image_files,pose_TWC
    ,ref_depth);
    if(ret==false){
        cout<<"Reading image files failed!"<<endl;
        return -1;
    }
    cout<<"read total"<<color_image_files.size()<<" files."<<endl;

    // 第一张图
    Mat ref=imread(color_image_files[0],0);//gray-scale image
    SE3d pose_ref_TWC=pose_TWC[0];
    double init_depth=3.0;//深度初始值
    double init_cov2=3.0;//方差初始值
    Mat depth(height,width,CV_64F,init_depth);
    Mat depth_cov2(height,width,CV_64F,init_cov2);//深度图方差
    for(int index=1;index<color_image_files.size();index++){
        cout<<"*** loop "<<index<<"***"<<endl;
        Mat curr=imread(color_image_files[index],0);
        if (curr.data == nullptr) continue;
        SE3d pose_curr_TWC=pose_TWC[index];
        SE3d pose_T_C_R=pose_curr_TWC.inverse()*pose_ref_TWC;//TCR=TCW*TWR
        update(ref,curr,pose_T_C_R,depth,depth_cov2);
        evaludateDepth(ref_depth,depth);
        plotDepth(ref_depth, depth);
        imshow("image", curr);
        waitKey(1);
    }

    cout << "estimation returns, saving depth map ..." << endl;
    imwrite("depth.png", depth);
    cout << "done." << endl;

    return 0;
}
void evaludateDepth(const Mat &depth_truth, const Mat &depth_estimate) {
    double ave_depth_error = 0;     // 平均误差
    double ave_depth_error_sq = 0;      // 平方误差
    int cnt_depth_data = 0;
    for (int y = boarder; y < depth_truth.rows - boarder; y++)
        for (int x = boarder; x < depth_truth.cols - boarder; x++) {
            double error = depth_truth.ptr<double>(y)[x] - depth_estimate.ptr<double>(y)[x];
            ave_depth_error += error;
            ave_depth_error_sq += error * error;
            cnt_depth_data++;
        }
    ave_depth_error /= cnt_depth_data;
    ave_depth_error_sq /= cnt_depth_data;

    cout << "Average squared error = " << ave_depth_error_sq << ", average error: " << ave_depth_error << endl;
}

bool update(const Mat &ref,const Mat &curr,const SE3d &T_C_R,Mat &depth,Mat &depth_cov2){
    for(int x=boarder;x<width-boarder;x++)
        for(int y=boarder;y<height-boarder;y++){
            //遍历每个像素
            if(depth_cov2.ptr<double>(y)[x]<min_cov||
            depth_cov2.ptr<double>(y)[x]>max_cov)//深度已收敛或发散
                continue;
            //在极线上搜索(x,y)的匹配
            Vector2d pt_curr;
            Vector2d epipolar_direction;
            bool ret = epipolarSearch(
                ref,
                curr,
                T_C_R,
                Vector2d(x, y),
                depth.ptr<double>(y)[x],
                sqrt(depth_cov2.ptr<double>(y)[x]),
                pt_curr,
                epipolar_direction
            );

            if (ret == false) // 匹配失败
                continue;
            // 取消该注释以显示匹配
            // showEpipolarMatch(ref, curr, Vector2d(x, y), pt_curr);

            // 匹配成功,更新深度图
            updateDepthFilter(Vector2d(x, y), pt_curr, T_C_R, epipolar_direction, depth, depth_cov2);
        }
}
bool readDatasetFiles(
    const string path,
    vector<string> &color_image_files,
    vector<SE3d> &poses,
    cv::Mat &ref_depth) {
    ifstream fin(path + "/first_200_frames_traj_over_table_input_sequence.txt");
    if (!fin) return false;

    while (!fin.eof()) {
        // 数据格式:图像文件名 tx, ty, tz, qx, qy, qz, qw ,注意是 TWC 而非 TCW
        string image;
        fin >> image;
        double data[7];
        for (double &d:data) fin >> d;

        color_image_files.push_back(path + string("/images/") + image);
        poses.push_back(
            SE3d(Quaterniond(data[6], data[3], data[4], data[5]),
                 Vector3d(data[0], data[1], data[2]))
        );
        if (!fin.good()) break;
    }
    fin.close();

    // load reference depth
    fin.open(path + "/depthmaps/scene_000.depth");
    ref_depth = cv::Mat(height, width, CV_64F);
    if (!fin) return false;
    for (int y = 0; y < height; y++)
        for (int x = 0; x < width; x++) {
            double depth = 0;
            fin >> depth;
            ref_depth.ptr<double>(y)[x] = depth / 100.0;
        }

    return true;
}

bool epipolarSearch(
    const Mat &ref,
    const Mat &curr,
    const SE3d &T_C_R,
    const Vector2d &pt_ref,
    const double &depth_mu,
    const double &depth_cov,
    Vector2d &pt_curr,
    Vector2d &epipolar_direction){
        //找到参考帧求出的p的
        Vector3d f_ref= px2cam(pt_ref);
        f_ref.normalize();
        Vector3d P_ref=f_ref*depth_mu;///参考帧的p向量

        Vector2d px_mean_curr=cam2px(T_C_R*P_ref);
        double d_min=depth_mu-3*depth_cov,d_max=depth_mu+3*depth_cov;
        if(d_min<0.1) d_min=0.1;
        Vector2d px_min_curr=cam2px(T_C_R*(f_ref*d_min));//按最小深度的投影
        Vector2d px_max_curr=cam2px(T_C_R*(f_ref*d_max));//按最大深度投影

        Vector2d epipolar_line=px_max_curr-px_min_curr;//极线(线段形式)
        epipolar_direction=epipolar_line;//极线方向
        epipolar_direction.normalize();
        double half_length=0.5*epipolar_line.norm();//极线线段的半长度
        if(half_length>100)half_length=100;

        //在上面搜索
        double best_ncc=-1.0;
        Vector2d best_px_curr;
        for(double l=-half_length;l<=half_length;l+=0.7){//l+=sqrt(2)
            Vector2d px_curr=px_mean_curr+l*epipolar_direction;//待匹配点
            if(!inside(px_curr))
                continue;
            //计算待匹配点与参考帧的NCC
            double ncc=NCC(ref,curr,pt_ref,pt_curr);
            if(ncc>best_ncc){
                best_ncc=ncc;
                best_px_curr=px_curr;
            }
        }
        if(best_ncc<0.85f)      //只相信 NCC 很高的匹配
            return false;
        pt_curr=best_px_curr;
        return true;
}

double NCC(const Mat &ref, const Mat &curr, const Vector2d &pt_ref, const Vector2d &pt_curr){
    //零均值-归一化互相关
    //先算均值
    double mean_ref=0,mean_curr=0;
    vector<double>values_ref,values_curr;//参考帧和当前帧的均值
    for(int x=-ncc_window_size;x<=ncc_window_size;x++)
        for(int y=-ncc_window_size;y<=ncc_window_size;y++){
            double value_ref=double(ref.ptr<uchar>(int(y+pt_ref(1,0)))[int(x+pt_ref(0,0))])/255.0;
            mean_ref+=value_ref;
            double value_curr = getBilinearInterpolatedValue(curr, pt_curr + Vector2d(x, y));
            mean_curr += value_curr;

            values_ref.push_back(value_ref);
            values_curr.push_back(value_curr);

        }
    mean_ref /= ncc_area;
    mean_curr /= ncc_area;
    // 计算 Zero mean NCC
    double numerator = 0, demoniator1 = 0, demoniator2 = 0;
    for (int i = 0; i < values_ref.size(); i++) {
        double n = (values_ref[i] - mean_ref) * (values_curr[i] - mean_curr);
        numerator += n;
        demoniator1 += (values_ref[i] - mean_ref) * (values_ref[i] - mean_ref);
        demoniator2 += (values_curr[i] - mean_curr) * (values_curr[i] - mean_curr);
    }
    return numerator / sqrt(demoniator1 * demoniator2 + 1e-10);   // 防止分母出现零
} 


bool updateDepthFilter(const Vector2d &pt_ref,
    const Vector2d &pt_curr,
    const SE3d &T_C_R,
    const Vector2d &epipolar_direction,
    Mat &depth,
    Mat &depth_cov2){
    //三角化计算深度
    SE3d T_R_C=T_C_R.inverse();
    Vector3d f_ref=px2cam(pt_ref);
    f_ref.normalize();
    Vector3d f_curr=px2cam(pt_curr);
    f_curr.normalize();

    Vector3d t = T_R_C.translation();
    Vector3d f2 = T_R_C.so3() * f_curr;
    Vector2d b = Vector2d(t.dot(f_ref), t.dot(f2));
    Matrix2d A;
    A(0, 0) = f_ref.dot(f_ref);
    A(0, 1) = -f_ref.dot(f2);
    A(1, 0) = -A(0, 1);
    A(1, 1) = -f2.dot(f2);
    Vector2d ans=A.inverse()*b;
    Vector3d xm=ans[0]*f_ref;   //ref侧求得p位置结果
    Vector3d xn=t+ans[1]*f2;    //cur侧求得p位置结果
    Vector3d p_esti=(xm+xn)/2.0;    //P的位置取两者平均
    double depth_estimation = p_esti.norm();   // 深度值

    // 计算不确定性(以一个像素为误差)
    Vector3d p=f_ref*depth_estimation;//p
    Vector3d a=p-t;//a
    double t_norm = t.norm();
    double a_norm = a.norm();
    double alpha = acos(f_ref.dot(t) / t_norm);
    double beta = acos(-a.dot(t) / (a_norm * t_norm));
    Vector3d f_curr_prime=px2cam(pt_curr+epipolar_direction);
    f_curr_prime.normalize();
    double beta_prime=acos(f_curr_prime.dot(-t)/t_norm);//t也是相机坐标系下的吗?是
    double  gamma=M_PI-alpha-beta_prime;
    double p_prime=t_norm*sin(beta_prime)/sin(gamma);
    double d_cov=p_prime-depth_estimation;
    double d_cov2=d_cov*d_cov;


    //高斯融合
    double mu = depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))];
    double sigma2 = depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))];

    double mu_fuse = (d_cov2 * mu + sigma2 * depth_estimation) / (sigma2 + d_cov2);
    double sigma_fuse2 = (sigma2 * d_cov2) / (sigma2 + d_cov2);

    depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = mu_fuse;
    depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = sigma_fuse2;

    return true;
}

void plotDepth(const Mat &depth_truth, const Mat &depth_estimate) {
    imshow("depth_truth", depth_truth * 0.4);
    imshow("depth_estimate", depth_estimate * 0.4);
    imshow("depth_error", depth_truth - depth_estimate);
    waitKey(1);
}

void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr) {
    Mat ref_show, curr_show;
    cv::cvtColor(ref, ref_show, CV_GRAY2BGR);
    cv::cvtColor(curr, curr_show, CV_GRAY2BGR);

    cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 0, 250), 2);
    cv::circle(curr_show, cv::Point2f(px_curr(0, 0), px_curr(1, 0)), 5, cv::Scalar(0, 0, 250), 2);

    imshow("ref", ref_show);
    imshow("curr", curr_show);
    waitKey(1);
}

void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr,
                      const Vector2d &px_max_curr) {

    Mat ref_show, curr_show;
    cv::cvtColor(ref, ref_show, CV_GRAY2BGR);
    cv::cvtColor(curr, curr_show, CV_GRAY2BGR);

    cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 255, 0), 2);
    cv::circle(curr_show, cv::Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2);
    cv::circle(curr_show, cv::Point2f(px_max_curr(0, 0), px_max_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2);
    cv::line(curr_show, Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), Point2f(px_max_curr(0, 0), px_max_curr(1, 0)),
             Scalar(0, 255, 0), 1);

    imshow("ref", ref_show);
    imshow("curr", curr_show);
    waitKey(1);
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(dense_mapping)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++14 -march=native -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

include_directories("/usr/include/eigen3")



#opencv2
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

#sophus
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})

find_package( FMT REQUIRED )



add_executable(dense_mapping dense_mapping.cpp)
target_link_libraries(dense_mapping 
${Sophus_LIBRARIES} ${OpenCV_LIBS})
target_link_libraries(dense_mapping fmt::fmt)

标签:curr,pt,double,depth,建图,SLAM,const,单目,ref
From: https://www.cnblogs.com/code-fun/p/16791245.html

相关文章