rm (list = ls ()) #清除所有变量
setwd("C:\\Users\\Administrator\\Desktop\\新建文件夹\\FAPROTAX微生物功能预测") #设置工作目录
# 加载所需的包
library(tidyverse)
library(agricolae)
library(dplyr)
# 读取数据
abundance_file <- "vegan.txt" # 功能丰度文件路径
group_file <- "metadata.txt" # 样本分组文件路径
abundance_data <- read.csv(abundance_file, sep = "\t", row.names = 1, check.names = FALSE)
group_data <- read.csv(group_file, sep = "\t", header = FALSE, col.names = c("Sample", "Group"))
# 整理分组信息
# 假设分组文件有两列,第一列为样本名,第二列为对应的分组
colnames(group_data) <- c("Sample", "Group")
# 转换丰度数据为长格式
abundance_long <- as.data.frame(t(abundance_data))
abundance_long$Sample <- rownames(abundance_long)
melted_data <- reshape2::melt(abundance_long, id.vars = "Sample")
# 合并分组信息
merged_data <- merge(melted_data, group_data, by = "Sample")
# 计算每个功能每一组的均值和标准差
group_summary <- merged_data %>%
group_by(variable, Group) %>%
summarise(Mean = mean(value), SD = sd(value))
# 指定分组的顺序
groups_order <- c("B73_DAS28", "B73_DAS42", "B73_DAS56", "B73_DAS70",
"Mo17_DAS28", "Mo17_DAS42", "Mo17_DAS56", "Mo17_DAS70")
# 确保merged_data中的Group列是因子类型,并设置正确的水平
merged_data$Group <- factor(merged_data$Group, levels = groups_order)
# 对每个功能进行ANOVA分析和Tukey HSD测试
analysis_results <- list()
for(feature in unique(merged_data$variable)) {
feature_data <- subset(merged_data, variable == feature)
model <- aov(value ~ Group, data = feature_data)
tukey <- HSD.test(model, "Group", console = TRUE)
analysis_results[[feature]] <- tukey
}
# 准备输出数据框
output_data <- data.frame(Feature = character(),
Group = factor(levels = groups_order),
Mean = numeric(),
SD = numeric(),
Significance = character())
# 填充输出数据
for(feature in names(analysis_results)) {
groups_info <- analysis_results[[feature]]$groups
for(group_name in groups_order) { # 按指定顺序处理分组
if(group_name %in% rownames(groups_info)){
group_data <- subset(merged_data, variable == feature & Group == group_name)
mean_val <- mean(group_data$value)
sd_val <- sd(group_data$value)
sig_mark <- as.character(groups_info[group_name, "groups"])
output_data <- rbind(output_data, data.frame(Feature = feature,
Group = group_name,
Mean = mean_val,
SD = sd_val,
Significance = sig_mark))
}
}
}
# 输出结果到TXT文件
write.table(output_data, "output_results.txt", row.names = FALSE, sep = "\t", quote = FALSE)
标签:多重,读取数据,均值,value,标准差,library From: https://www.cnblogs.com/wzbzk/p/18082069