根号分治之类的思路分析这里就不讲了,主要关注代码细节:
#include <iostream> #include <stdio.h> #include <algorithm> #include <vector> #include <string> #include <cmath> #define For(i, j, n) for (int i = j; i <= n; ++i) using namespace std; const int N = 50005, M = 2e5 + 5; int n, m, q; inline int read() { int x = 0; char ch = getchar(); while (ch < '0' || ch > '9') ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x; } // 最小生成树 并查集 int fa[N]; inline int find(int x) { return x == fa[x] ? x : (fa[x] = find(fa[x])); } struct StrForEdge { int _from, _to, w; bool operator<(const StrForEdge &_other) const { return w < _other.w; } } Edge[M * 2]; // 树边需要的一些数据成员 typedef pair<int, int> PII; vector<PII> tree_edges[N]; // 连边 void on_tree_connect(int a, int b, int w) { tree_edges[a].push_back({b, w}); tree_edges[b].push_back({a, w}); } void init_tree() { // 初始化并查集 for (int i = 1; i <= n; i++) fa[i] = i; int tree_cnt = 0; for (int i = 1; i <= m; i++) { int a = Edge[i]._from, b = Edge[i]._to; int pa = find(a), pb = find(b); if (pa != pb) { on_tree_connect(a, b, Edge[i].w); fa[pa] = pb; if (++tree_cnt == n - 1) return; } } } // 最小生成树 int lca_fa[N][17], maxw[N][17], depth[N]; void dfs_lca(int now, int Father) { for (PII edge_on_tree : tree_edges[now]) { int v = edge_on_tree.first, w = edge_on_tree.second; if (v == Father) continue; depth[v] = depth[now] + 1; lca_fa[v][0] = now; maxw[v][0] = w; for (int i = 1; i <= 16; i++) { lca_fa[v][i] = lca_fa[lca_fa[v][i - 1]][i - 1]; maxw[v][i] = max(maxw[v][i - 1], maxw[lca_fa[v][i - 1]][i - 1]); } dfs_lca(v, now); } } int link_on_tree(int a, int b) { int res = -1; if (depth[a] < depth[b]) swap(a, b); int d_of_depth = depth[a] - depth[b]; for (int i = d_of_depth, Base = 0; i > 0; i >>= 1, Base++) { if (i & 1) { res = max(res, maxw[a][Base]); a = lca_fa[a][Base]; } } if (a == b) return res; for (int i = 16; i >= 0; i--) if (lca_fa[a][i] != lca_fa[b][i]) { res = max(res, maxw[a][i]); a = lca_fa[a][i]; res = max(res, maxw[b][i]); b = lca_fa[b][i]; } res = max(res, max(maxw[a][0], maxw[b][0])); return res; } void init_lca() { // 以一号节点为根 depth[1] = 1; dfs_lca(1, 0); } // 把询问离线,分辨建立线段树 int ans[N]; struct StruForSegTree { int l, r, maxx; } SegTree[N * 4]; // 线段树的元数据 int DisofSegTree[N]; struct StruForQuery { int l, r, k, c, id; bool operator<(const StruForQuery &_other) const { if (k != _other.k) return k < _other.k; return c < _other.c; } } Q[N]; void BuildSegTree(int now, int l, int r) { SegTree[now] = {l, r, 0}; if (l == r) { SegTree[now].maxx = DisofSegTree[l]; return; } int mid = (l + r) >> 1; int lson = now << 1, rson = now << 1 | 1; BuildSegTree(lson, l, mid); BuildSegTree(rson, mid + 1, r); SegTree[now].maxx = max(SegTree[lson].maxx, SegTree[rson].maxx); } void SmallInit(StruForQuery qnow) { int L = 0, R = n, DataCnt = 0; for (int i = L / qnow.k * qnow.k + qnow.c; i + qnow.k <= R; i += qnow.k) { if (i < L) continue; DisofSegTree[++DataCnt] = link_on_tree(i, i + qnow.k); } BuildSegTree(1, 1, DataCnt); } int SegTreeQuery(int now, int l, int r) { if (SegTree[now].l >= l && SegTree[now].r <= r) return SegTree[now].maxx; int mid = (SegTree[now].l + SegTree[now].r) >> 1; int res = -1; if (l <= mid) res = SegTreeQuery(now << 1, l, r); if (r > mid) res = max(res, SegTreeQuery(now << 1 | 1, l, r)); return res; } int SmallQuery(StruForQuery qnow, bool has_changed) { if (has_changed) SmallInit(qnow); int L = qnow.l, R = qnow.r; int k = qnow.k, c = qnow.c; int _offset = 1 + ((L - c) % k != 0); int l_to_query = (L - c) / k + _offset; if (L <= c) l_to_query = 1; int r_to_query = (R - c) / k; return SegTreeQuery(1, l_to_query, r_to_query); } int BigQuery(StruForQuery qnow) { int L = qnow.l, R = qnow.r, ans = -1; for (int i = L / qnow.k * qnow.k + qnow.c; i + qnow.k <= R; i += qnow.k) { if (i < L) continue; ans = max(ans, link_on_tree(i, i + qnow.k)); } return ans; } int main() { n = read(); m = read(); q = read(); int tmpa, tmpb, tmpc; for (int i = 1; i <= m; i++) { tmpa = read(); tmpb = read(); tmpc = read(); Edge[i] = {tmpa, tmpb, tmpc}; } sort(Edge + 1, Edge + m + 1); init_tree(); init_lca(); int ql, qr, qk, qc; int Threshold = min(n / 3, 110); for (int i = 1; i <= q; i++) { ql = read(); qr = read(); qk = read(); qc = read(); Q[i] = {ql, qr, qk, qc, i}; } sort(Q + 1, Q + q + 1); int know = 0, kc = 0; for (int i = 1; i <= q; i++) { if (Q[i].k > Threshold) { ans[Q[i].id] = BigQuery(Q[i]); continue; } bool has_changed = false; if (know != Q[i].k) know = Q[i].k, has_changed = true; if (kc != Q[i].c) kc = Q[i].c, has_changed = true; ans[Q[i].id] = SmallQuery(Q[i], has_changed); } for (int i = 1; i <= q; i++) printf("%d\n", ans[i]); return 0; }
为什么一开始会超时:
确实,通过重定义小于运算符来对查询进行排序,理论上会将具有相同`k`和`c`值的查询放在一起。这是因为你的排序策略首先考虑`k`的值,然后是`c`的值。这样做的目的是为了将具有相同参数的查询分组,以便可以一次性处理这些查询,减少重复的初始化操作。你提供的代码片段是:
```cpp
bool operator < (const StruForQuery &_other)const
{
return k < _other.k;
if(k == _other.k)
return c < _other.c;
}
```
然而,上面的重载`operator<`实际上有一个逻辑错误。如果`k < _other.k`为`true`,那么比较就在这里结束,这是正确的。但是,如果`k == _other.k`,那么你希望进一步比较`c`的值。然而,由于`return k < _other.k;`这行代码的存在,当`k`等于`_other.k`时,函数就会结束,后面的`if(k == _other.k)`永远不会执行。
正确的写法应该是:
```cpp
bool operator < (const StruForQuery &_other)const
{
if(k != _other.k) return k < _other.k;
return c < _other.c;
}
```
或者更简洁的形式:
```cpp
bool operator < (const StruForQuery &_other)const
{
return k == _other.k ? c < _other.c : k < _other.k;
}
```
这样就可以确保当`k`相等时,会根据`c`的值进行排序,确保具有相同`k`和`c`的查询会被放在一起。
如果你在实现中已经正确地排序了查询,那么每次遇到不同的`(k, c)`组合时确实应该只初始化一次。如果出现重复初始化的情况,可能需要进一步检查逻辑,确认是不是每个组合确实只处理了一次,或者是不是排序后的查询确实如你所期望的那样正确分组。此外,确认`SmallInit`调用和相关处理是否被正确地限制在每个独特的`(k, c)`组合上。
总之,正确实现和应用排序逻辑是关键,这将确保查询按照期望的方式被组织和处理,从而避免不必要的重复操作。
关键就在于直接return了,如果k!=_other.k,那么就会直接return false,但是后面有关c的判断并不会被执行。
标签:return,int,res,蓝桥,other,lca,2015,const,P8626 From: https://www.cnblogs.com/smartljy/p/18081730