首页 > 其他分享 >走进volatile的世界,探索它与可见性,有序性,原子性之间的爱恨情仇!

走进volatile的世界,探索它与可见性,有序性,原子性之间的爱恨情仇!

时间:2024-03-18 09:02:07浏览次数:26  
标签:count 变量 情仇 stop 线程 有序性 volatile CPU

写在开头

在之前的几篇博文中,我们都提到了 volatile 关键字,这个单词中文释义为:不稳定的,易挥发的,在Java中代表变量修饰符,用来修饰会被不同线程访问和修改的变量,对于方法,代码块,方法参数,局部变量以及实例常量,类常量多不能进行修饰。

自JDK1.5之后,官网对volatile进行了语义增强,这让它在Java多线程领域越发重要!因此,我们今天就抽一晚上时间,来学一学这个关键字,首先,我们从标题入手,思考这样的一个问题:

volatile是如何保证可见性的?又是如何禁止指令重排的,它为什么不能实现原子性呢?

带着疑问,我们一起走进volatile的世界,探索它与可见性,有序性,原子性之间的爱恨情仇!

volatile如何保证可见性?

volatile保证了不同线程对共享变量进行操作时的可见性,即一个线程修改了共享变量的值,共享变量修改后的值对其他线程立即可见。

我们先通过之前写的一个小案例来感受一下什么是可见性问题:

【代码示例1】

public class Test {
    //是否停止 变量
    private static boolean stop = false;
    public static void main(String[] args) throws InterruptedException {
        //启动线程 1,当 stop 为 true,结束循环
        new Thread(() -> {
            System.out.println("线程 1 正在运行...");
            while (!stop) ;
            System.out.println("线程 1 终止");
        }).start();
        //休眠 1 秒
        Thread.sleep(1000);
        //启动线程 2, 设置 stop = true
        new Thread(() -> {
            System.out.println("线程 2 正在运行...");
            stop = true;
            System.out.println("设置 stop 变量为 true.");
        }).start();
    }
}

输出:

线程 1 正在运行...
线程 2 正在运行...
设置 stop 变量为 true.

原因:
我们会发现,线程1运行起来后,休眠1秒,启动线程2,可即便线程2把stop设置为true了,线程1仍然没有停止,这个就是因为 CPU 缓存导致的可见性导致的问题。线程 2 设置 stop 变量为 true,线程 1 在 CPU 1上执行,读取的 CPU 1 缓存中的 stop 变量仍然为 false,线程 1 一直在循环执行。
image

那这个问题怎么解决呢?很好解决!我们排volatile上场可以秒搞定,只需要给stop变量加上volatile修饰符即可!

【代码示例2】

//给stop变量增加volatile修饰符
private static volatile boolean stop = false;

输出:

线程 1 正在运行...
线程 2 正在运行...
设置 stop 变量为 true.
线程 1 终止

从结果中看,线程1成功的读取到了线程而设置为true的stop变量值,解决了可见性问题。那volatile到底是什么让变量在多个线程之间保持可见性的呢?请看下图!
image

如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取,具体实现可总结为5步。

  • 1️⃣在生成最低成汇编指令时,对volatile修饰的共享变量写操作增加Lock前缀指令,Lock 前缀的指令会引起 CPU 缓存写回内存;
  • 2️⃣CPU 的缓存回写到内存会导致其他 CPU 缓存了该内存地址的数据无效;
  • 3️⃣volatile 变量通过缓存一致性协议保证每个线程获得最新值;
  • 4️⃣缓存一致性协议保证每个 CPU 通过嗅探在总线上传播的数据来检查自己缓存的值是不是修改;
  • 5️⃣当 CPU 发现自己缓存行对应的内存地址被修改,会将当前 CPU 的缓存行设置成无效状态,重新从内存中把数据读到 CPU 缓存。

volatile如何保证有序性?

在之前的学习我们了解到,为了充分利用缓存,提高程序的执行速度,编译器在底层执行的时候,会进行指令重排序的优化操作,但这种优化,在有些时候会带来 有序性 的问题。

那何为有序性呢?我们可以通俗理解为:程序执行的顺序要按照代码的先后顺序。 当然,之前我们还说过发生有序性问题时,我们可以通过给变量添加volatile修饰符进行解决。

首先,我们来回顾一下之前写的一个关于有序性问题的测试类。
【代码示例1】

int a = 1;(1)
int b = 2;(2)
int c = a + b;(3)

上面的这段代码中,c变量依赖a,b的值,因此,在编译器优化重排时,c肯定会在a,b赋值以后执行,但a,b之间没有依赖关系,可能会发生重排序,但这种重排序即便到了多线程中依旧不会存在问题,因为即便重排对执行结果也无影响。

但有些时候,指令重排序可以保证串行语义一致,但是没有义务保证多线程间的语义也一致,我们继续看下面这段代码:

【代码示例2】

public class Test {

    private static int num = 0;
    private static boolean ready = false;
    //禁止指令重排,解决顺序性问题
    //private static volatile boolean ready = false;

    public static class ReadThread extends Thread {

        @Override
        public void run() {

            while (!Thread.currentThread().isInterrupted()) {
                if (ready) {//(1)
                    System.out.println(num + num);//(2)
                }
                System.out.println("读取线程...");
            }
        }
    }

    public static class WriteRead extends Thread {

        @Override
        public void run() {
            num = 2;//(3)
            ready = true;//(4)
            System.out.println("赋值线程...");
        }
    }

    public static void main(String[] args) throws InterruptedException {
        ReadThread rt = new ReadThread();
        rt.start();

        WriteRead wr = new WriteRead();
        wr.start();

        Thread.sleep(10);
        rt.interrupt();
        System.out.println("rt stop...");
    }
}

我们定义了2个线程,一个用来求和操作,一个用来赋值操作,因为定义的是成员变量,所以代码(1)(2)(3)(4)之间不存在依赖关系,在运行时极可能发生指令重排序,如将(4)在(3)前执行,顺序为(4)(1)(3)(2),这时输出的就是0而不是4,但在很多性能比较好的电脑上,这种重排序情况不易复现。
这时,我们给ready 变量添加一个volatile关键字,就成功的解决问题了。

volatile关键字可以禁止指令重排的原因主要有两个!

一、3 个 happens-before 规则的实现

  1. 对一个 volatile 变量的写 happens-before 任意后续对这个 volatile 变量的读;
  2. 一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作;
  3. happens-before 传递性,A happens-before B,B happens-before C,则 A happens-before C。

二、内存屏障
变量声明为 volatile 后,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。

内存屏障(Memory Barrier 又称内存栅栏,是一个 CPU 指令),为了实现volatile 内存语义,volatile 变量的写操作,在变量的前面和后面分别插入内存屏障;volatile 变量的读操作是在后面插入两个内存屏障。

具体屏障规则:

  1. 在每个 volatile 写操作的前面插入一个 StoreStore 屏障;
  2. 在每个 volatile 写操作的后面插入一个 StoreLoad 屏障;
  3. 在每个 volatile 读操作的后面插入一个 LoadLoad 屏障;
  4. 在每个 volatile 读操作的后面插入一个 LoadStore 屏障。

屏障说明:

  1. StoreStore:禁止之前的普通写和之后的 volatile 写重排序;
  2. StoreLoad:禁止之前的 volatile 写与之后的 volatile 读/写重排序;
  3. LoadLoad:禁止之后所有的普通读操作和之前的 volatile 读重排序;
  4. LoadStore:禁止之后所有的普通写操作和之前的 volatile 读重排序。

OK,知道了这些内容之后,我们再回头看代码示例2中,增加了volatile关键字后的执行顺序,在赋值线程启动后,执行顺序会变成(3)(4)(1)(2),这时打印的结果就为4啦!

volatile为什么不能保证原子性?

我们讲完了volatile修饰符保证可见性与有序性的内容,接下来我们思考另外一个问题,它能够保证原子性吗?为什么?我们依旧通过一段代码去证明一下!

【代码示例3】

public class Test {
    //计数变量
    static volatile int count = 0;
    public static void main(String[] args) throws InterruptedException {
        //线程 1 给 count 加 10000
        Thread t1 = new Thread(() -> {
            for (int j = 0; j <10000; j++) {
                count++;
            }
            System.out.println("thread t1 count 加 10000 结束");
        });
        //线程 2 给 count 加 10000
        Thread t2 = new Thread(() -> {
            for (int j = 0; j <10000; j++) {
                count++;
            }
            System.out.println("thread t2 count 加 10000 结束");
        });
        //启动线程 1
        t1.start();
        //启动线程 2
        t2.start();
        //等待线程 1 执行完成
        t1.join();
        //等待线程 2 执行完成
        t2.join();
        //打印 count 变量
        System.out.println(count);
    }
}

我们创建了2个线程,分别对count进行加10000操作,理论上最终输出的结果应该是20000万对吧,但实际并不是,我们看一下真实输出。

输出:

thread t1 count 加 10000 结束
thread t2 count 加 10000 结束
14281

原因:
Java 代码中 的 count++并非原子的,而是一个复合性操作,至少需要三条CPU指令:

  • 指令 1:把变量 count 从内存加载到CPU的寄存器
  • 指令 2:在寄存器中执行 count + 1 操作
  • 指令 3:+1 后的结果写入CPU缓存或内存

即使是单核的 CPU,当线程 1 执行到指令 1 时发生线程切换,线程 2 从内存中读取 count 变量,此时线程 1 和线程 2 中的 count 变量值是相等,都执行完指令 2 和指令 3,写入的 count 的值是相同的。从结果上看,两个线程都进行了 count++,但是 count 的值只增加了 1。这种情况多发生在cpu占用时间较长的线程中,若单线程对count仅增加100,那我们就很难遇到线程的切换,得出的结果也就是200啦。

要想解决也很简单,利用 synchronized、Lock或者AtomicInteger都可以,我们在后面的文章中会聊到的,请继续保持关注哦!

结尾彩蛋

如果本篇博客对您有一定的帮助,大家记得留言+点赞+收藏呀。原创不易,转载请联系Build哥!

image

如果您想与Build哥的关系更近一步,还可以关注“JavaBuild888”,在这里除了看到《Java成长计划》系列博文,还有提升工作效率的小笔记、读书心得、大厂面经、人生感悟等等,欢迎您的加入!

image

标签:count,变量,情仇,stop,线程,有序性,volatile,CPU
From: https://www.cnblogs.com/JavaBuild/p/18079579

相关文章

  • Java面试题:详解单例模式与内存泄漏?内存模型与volatile关键字的实操?并发工具包与并发框
    Java核心技术:设计模式、内存管理与并发编程深度解析在Java技术领域,设计模式、内存管理和并发编程是构建高效、稳定系统的关键。本文将通过三道综合性面试题,深入探讨这些核心知识点,帮助读者理解其背后的原理,并在实际编程中避免常见错误。面试题一:单例模式与内存泄漏问题核......
  • volatile
    1.编译器优化,优化掉看起来重复无用的代码。(1)并行设备的硬件寄存器(如状态寄存器)。当声明指向并行设备的硬件寄存器的指针时要用volatile修饰,因为寄存器可以随时被外设硬件修改。例如使用for循环对指向寄存器的指针循环读写的时候如果不加volatile修饰指针,编译器会优化,只执行最......
  • C语言const 和 *的爱恨情仇
    相信所有在学C的人都对const和*这对小情侣非常熟悉,实在是太烦了。他们中间还时不时得加个第三者什么int,char啥的。看了很多资料再加上我自身的总结提炼理解以后,我终于把他们理清了。首先const这个关键字是用来修饰常量的,我们就简称它为常量。定义指针的时候都会用到*,int*p......
  • volatile 关键字解析
    参考文档:validate关键字解析摘要:在Java并发编程中,要想使并发程序能够正确地执行,必须要保证三条原则,即:原子性、可见性和有序性。只要有一条原则没有被保证,就有可能会导致程序运行不正确。volatile关键字被用来保证可见性,即保证共享变量的内存可见性以解决缓存一致性问题......
  • volatile关键字是如何确保多线程环境下变量的可见性和有序性
    VOLATILE关键字在JAVA中用于确保多线程环境下的变量可见性和一定程度的有序性,其具体实现机制基于JAVA内存模型(JAVAMEMORYMODEL,JMM):可见性:当一个线程修改了标记为volatile的共享变量时,它会强制将这个变量值从当前线程的工作内存刷新回主内存。同时,其他线程在读取该volatil......
  • volatile关键字用处和场景?
    什么是volatile关键字在C语言和Java中,它是一种特殊的类型修饰符,用来告诉编译器该变量可能会被意外地改变。这样,每次存取该变量时,编译器都不会对其进行缓存优化,而是直接从内存中读取或写入,提供了对特殊地址的稳定访问。在Java中,volatile提供了一种比synchronized更轻量级的同步......
  • C++中的volatile关键字
    在C++中,volatile是一个关键字,用于告诉编译器,该变量的值可能会在未知的时刻被意外地改变,因此编译器对于该修饰的变量的操作时应该保持对该变量内存地址的直接内存访问操作,而不应对访问该变量的代码进行任何优化。。volatile关键字的主要作用是告诉编译器不要对该变量进行优化,......
  • Volatile关键字原理
    转载请标明:https://www.cnblogs.com/tangZH/p/15113505.html一、如果一个变量被volatile关键字修饰,那么所有线程都是可见的。所谓可见就是,当一条线程修改了这个变量值,新值对于其他线程来时是立即可见的; 而普通变量不能做到这一点。 1、现在计算机缓存架构:  CPU与内存之......
  • JUC系列之(二)volatile关键字
    volatile关键字-内存可见性引出内存可见性问题的示例:packagecom.atguigu.juc;publicclassTestVolatile{publicstaticvoidmain(String[]args){//线程threadDemo修改共享变量的值ThreadDemothreadDemo=newThreadDemo();newThrea......
  • volatile及内存屏障理解总结
    volatile关键字是一种类型修饰符,用它声明的类型变量表示可以被某些未知的因素更改。volatile提醒编译器它后面所定义的变量随时都有可能改变,因此编译后的程序每次需要存储或读取这个变量的时候,都会直接从变量地址中读取数据。如果没有volatile关键字,则编译器可能优化读取和存......