最近时间序列预测预测领域的最新进展受到了各个领域(包括文本、图像和语音)成功开发基础模型的影响,例如文本(如ChatGPT)、文本到图像(如Midjourney)和文本到语音(如Eleven Labs)。这些模型的广泛采用导致了像TimeGPT[1]这样的模型的出现,这些模型利用了类似于它们在文本、图像和语音方面获得成功的方法和架构。
在本文中,我们将讨论一个通用的预训练模型能否解决预测任务的范式转变。我们通过使用TimeGPT进行零样本学习并对模型的性能进行了彻底分析。然后将TimeGPT的性能与TiDE[2]进行比较(TiDE是一种在预测用例中击败了Transformer的简单的多层感知机)。
https://avoid.overfit.cn/post/b74a5eaf984849b186b26ea6d8f93db5
标签:预测,模型,样本,TimeGPT,TiDE,文本 From: https://www.cnblogs.com/deephub/p/18078339