首页 > 其他分享 >多线程系列(二十) -CompletableFuture使用详解

多线程系列(二十) -CompletableFuture使用详解

时间:2024-03-15 09:46:35浏览次数:33  
标签:多线程 System 任务 详解 CompletableFuture println 执行 out

一、摘要

在上篇文章中,我们介绍了Future相关的用法,使用它可以获取异步任务执行的返回值。

我们再次回顾一下Future相关的用法。

public class FutureTest {

    public static void main(String[] args) throws Exception {
        long startTime = System.currentTimeMillis();
        // 创建一个线程池
        ExecutorService executor = Executors.newFixedThreadPool(1);

        // 提交任务并获得Future的实例
        Future<String> future = executor.submit(new Callable<String>() {
            @Override
            public String call() throws Exception {
                // 执行下载某文件任务,并返回文件名称
                System.out.println("thread name:" +  Thread.currentThread().getName() + " 开始执行下载任务");
                Thread.sleep(200);
                return "xxx.png";
            }
        });

        //模拟主线程其它操作耗时
        Thread.sleep(300);

        // 通过阻塞方式,从Future中获取异步执行返回的结果
        String result = future.get();
        System.out.println("任务执行结果:" +  result);
        System.out.println("总共用时:" + (System.currentTimeMillis() - startTime) + "ms");

        // 任务执行完毕之后,关闭线程池
        executor.shutdown();
    }
}

运行结果如下:

thread name:pool-1-thread-1 开始执行下载任务
任务执行结果:xxx.png
总共用时:308ms

如果不采用线程执行,那么总共用时应该会是 200 + 300 = 500 ms,而采用线程来异步执行,总共用时是 308 ms。不难发现,通过Future和线程池的搭配使用,可以有效的提升程序的执行效率。

但是Future对异步执行结果的获取并不是很友好,要么调用阻塞方法get()获取结果,要么轮训调用isDone()方法是否等于true来判断任务是否执行完毕来获取结果,这两种方法都不算很好,因为主线程会被迫等待。

因此,从 Java 8 开始引入了CompletableFuture,它针对Future做了很多的改进,在实现Future接口相关功能之外,还支持传入回调对象,当异步任务完成或者发生异常时,自动调用回调对象方法。

下面我们一起来看看CompletableFuture相关的用法!

二、CompletableFuture 用法介绍

我们还是以上面的例子为例,改用CompletableFuture来实现,内容如下:

public class FutureTest2 {

    public static void main(String[] args) throws Exception {
        // 创建异步执行任务
        CompletableFuture<String> cf = CompletableFuture.supplyAsync(FutureTest2::download);

        // 如果执行成功,回调此方法
        cf.thenAccept((result) -> {
            System.out.println("任务执行成功,返回结果值:" +  result);
        });

        // 如果执行异常,回调此方法
        cf.exceptionally((e) -> {
            System.out.println("任务执行失败,原因:" +  e.getMessage());
            return null;
        });

        //模拟主线程其它操作耗时
        Thread.sleep(300);
    }

    /**
     * 下载某个任务
     * @return
     */
    private static String download(){
        // 执行下载某文件任务,并返回文件名称
        System.out.println("thread name:" +  Thread.currentThread().getName() + " 开始执行下载任务");
        try {
            Thread.sleep(200);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return "xxx.png";
    }
}

运行结果如下:

thread name:ForkJoinPool.commonPool-worker-1 开始执行下载任务
任务执行成功,返回结果值:xxx.png

可以发现,采用CompletableFuture类的supplyAsync()方法进行异步编程,代码上简洁了很多,不需要单独创建线程池。

实际上,CompletableFuture也使用了线程池来执行任务,部分核心源码如下:

public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {

    // 判断当前机器 cpu 可用逻辑核心数是否大于1
    private static final boolean useCommonPool = (ForkJoinPool.getCommonPoolParallelism() > 1);
    
    // 默认采用的线程池
    // 如果useCommonPool = true,采用 ForkJoinPool.commonPool 线程池
    // 如果useCommonPool = false,采用 ThreadPerTaskExecutor 执行器
    private static final Executor asyncPool = useCommonPool ?
        ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

    // ThreadPerTaskExecutor执行器类
    static final class ThreadPerTaskExecutor implements Executor {
        public void execute(Runnable r) { new Thread(r).start(); }
    }


    // 异步执行任务的方法
    public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
        return asyncSupplyStage(asyncPool, supplier);
    }

    // 异步执行任务的方法,支持传入自定义线程池
    public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,
                                                       Executor executor) {
        return asyncSupplyStage(screenExecutor(executor), supplier);
    }
}

从源码上可以分析出如下几点:

  • 当前机器 cpu 可用逻辑核心数大于 1,默认会采用ForkJoinPool.commonPool()线程池来执行任务
  • 当前机器 cpu 可用逻辑核心数等于 1,默认会采用ThreadPerTaskExecutor类来执行任务,它是个一对一执行器,每提交一个任务会创建一个新的线程来执行
  • 同时也支持用户传入自定义线程池来异步执行任务

其中ForkJoinPool线程池是从 JDK 1.7 版本引入的,它是一个全新的线程池,后面在介绍Fork/Join框架文章中对其进行介绍。

除此之外,CompletableFuture为开发者还提供了几十种方法,以便满足更多的异步任务执行的场景。这些方法包括创建异步任务、任务异步回调、多个任务组合处理等内容,下面我们就一起来学习一下相关的使用方式。

2.1、创建异步任务

CompletableFuture创建异步任务,常用的方法有两个。

  • runAsync():执行异步任务时,没有返回值
  • supplyAsync():执行异步任务时,可以带返回值

runAsync()supplyAsync()方法相关的源码如下:

// 使用默认内置线程池执行任务,根据runnable构建执行任务,无返回值
public static CompletableFuture<Void> runAsync(Runnable runnable)

// 使用自定义线程池执行任务,根据runnable构建执行任务,无返回值
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)

// 使用默认内置线程池执行任务,根据supplyAsync构建执行任务,可以带返回值
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)

// 使用自定义线程池执行任务,根据supplyAsync构建执行任务,可以带返回值
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)

两者都支持使用自定义的线程池来执行任务,稍有不同的是supplyAsync()方法的入参使用的是Supplier接口,它表示结果的提供者,该结果返回一个对象且不接受任何参数,支持通过 lambda 语法简写

下面我们一起来看看相关的使用示例!

2.1.1、runAsync 使用示例
public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<Void> cf = CompletableFuture.runAsync(new Runnable() {
        @Override
        public void run() {
            System.out.println("runAsync,执行完毕");
        }
    });
    System.out.println("runAsync,任务执行结果:" + cf.get());
}

输出结果:

runAsync,执行完毕
runAsync,任务执行结果:null
2.1.2、supplyAsync 使用示例
public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行完毕");
        return "hello world";
    });
    System.out.println("supplyAsync,任务执行结果:" + cf.get());
}

输出结果:

supplyAsync,执行完毕
supplyAsync,任务执行结果:hello world

2.2、任务异步回调

当创建的异步任务执行完毕之后,我们希望拿着上一个任务的执行结果,继续执行后续的任务,此时就可以采用回调方法来处理。

CompletableFuture针对任务异步回调做了很多的支持,常用的方法如下:

  • thenRun()/thenRunAsync():它表示上一个任务执行成功后的回调方法,无入参,无返回值
  • thenAccept()/thenAcceptAsync():它表示上一个任务执行成功后的回调方法,有入参,无返回值
  • thenApply()/thenApplyAsync():它表示上一个任务执行成功后的回调方法,有入参,有返回值
  • whenComplete()/whenCompleteAsync():它表示任务执行完成后的回调方法,有入参,无返回值
  • handle()/handleAsync():它表示任务执行完成后的回调方法,有入参,有返回值
  • exceptionally():它表示任务执行异常后的回调方法

下面我们一起来看看相关的使用示例!

2.2.1、thenRun/thenRunAsync

thenRun()/thenRunAsync()方法,都表示上一个任务执行成功后的回调处理,无入参,无返回值。稍有不同的是,thenRunAsync()方法会采用独立的线程池来执行任务。

相关的源码方法如下:

// 默认线程池
private static final Executor asyncPool = useCommonPool ?
        ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

// 采用与上一个任务的线程池来执行任务
public CompletableFuture<Void> thenRun(Runnable action) {
    return uniRunStage(null, action);
}

// 采用默认线程池来执行任务
public CompletableFuture<Void> thenRunAsync(Runnable action) {
    return uniRunStage(asyncPool, action);
}

从源码上可以清晰的看到,thenRun()/thenRunAsync()方法都调用了uniRunStage()方法,不同的是thenRunAsync()使用了asyncPool参数,也就是默认的线程池;而thenRun()方法使用的是null,底层采用上一个任务的线程池来执行,总结下来就是:

  • 当调用thenRun()方法执行任务时,当前任务和上一个任务都共用同一个线程池
  • 当调用thenRunAsync()方法执行任务时,上一个任务采用自己的线程池来执行;而当前任务会采用默认线程池来执行,比如ForkJoinPool

thenAccept()/thenAcceptAsync()thenApply()/thenApplyAsync()whenComplete()/whenCompleteAsync()handle()/handleAsync()方法之间的区别也类似,下文不再重复讲解。

下面我们一起来看看thenRun()方法的使用示例。

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行完毕");
        return "hello world";
    });

    // 当上一个任务执行成功,会继续回调当前方法
    CompletableFuture<Void> cf2 = cf1.thenRun(() -> {
        System.out.println("thenRun1,执行完毕");

    });

    CompletableFuture<Void> cf3 = cf2.thenRun(() -> {
        System.out.println("thenRun2,执行完毕");
    });


    System.out.println("任务执行结果:" + cf3.get());
}

输出结果:

supplyAsync,执行完毕
thenRun1,执行完毕
thenRun2,执行完毕
任务执行结果:null

如果上一个任务执行异常,是不会回调thenRun()方法的,示例如下:

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行完毕");
        if(1 == 1){
            throw new RuntimeException("执行异常");
        }
        return "hello world";
    });

    // 当上一个任务执行成功,会继续回调当前方法
    CompletableFuture<Void> cf1 = cf.thenRun(() -> {
        System.out.println("thenRun1,执行完毕");

    });

    // 监听执行时异常的回调方法
    CompletableFuture<Void> cf2 = cf1.exceptionally((e) -> {
        System.out.println("发生异常,错误信息:" + e.getMessage());
        return null;
    });

    System.out.println("任务执行结果:" + cf2.get());
}

输出结果:

supplyAsync,执行完毕
发生异常,错误信息:java.lang.RuntimeException: 执行异常
任务执行结果:null

可以清晰的看到,thenRun()方法没有回调。

thenAccept()thenAcceptAsync()thenApply()thenApplyAsync()方法也类似,当上一个任务执行异常,不会回调这些方法。

2.2.2、thenAccept/thenAcceptAsync

thenAccept()/thenAcceptAsync()方法,表示上一个任务执行成功后的回调方法,有入参,无返回值。

相关的示例如下。

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行完毕");
        return "hello world";
    });

    // 当上一个任务执行成功,会继续回调当前方法
    CompletableFuture<Void> cf2 = cf1.thenAccept((r) -> {
        System.out.println("thenAccept,执行完毕,上一个任务执行结果值:" + r);

    });

    System.out.println("任务执行结果:" + cf2.get());
}

输出结果:

supplyAsync,执行完毕
thenAccept,执行完毕,上一个任务执行结果值:hello world
任务执行结果:null
2.2.3、thenApply/thenApplyAsync

thenApply()/thenApplyAsync()方法,表示上一个任务执行成功后的回调方法,有入参,有返回值。

相关的示例如下。

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行完毕");
        return "hello world";
    });

    // 当上一个任务执行成功,会继续回调当前方法
    CompletableFuture<String> cf2 = cf1.thenApply((r) -> {
        System.out.println("thenApply,执行完毕,上一个任务执行结果值:" + r);
        return "gogogo";
    });

    System.out.println("任务执行结果:" + cf2.get());
}

输出结果:

supplyAsync,执行完毕
thenApply,执行完毕,上一个任务执行结果值:hello world
任务执行结果:gogogo
2.2.4、whenComplete/whenCompleteAsync

whenComplete()/whenCompleteAsync()方法,表示任务执行完成后的回调方法,有入参,无返回值。

稍有不同的是:无论任务执行成功还是失败,它都会回调。

相关的示例如下。

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行完毕");
        if(1 == 1){
            throw new RuntimeException("执行异常");
        }
        return "hello world";
    });

    // 当任务执行完成,会继续回调当前方法
    CompletableFuture<String> cf2 = cf1.whenComplete((r, e) -> {
        System.out.println("whenComplete,执行完毕,上一个任务执行结果值:" + r + ",异常信息:" + e.getMessage());
    });

    // 监听执行时异常的回调方法
    CompletableFuture<String> cf3 = cf2.exceptionally((e) -> {
        System.out.println("发生异常,错误信息:" + e.getMessage());
        return e.getMessage();
    });

    System.out.println("任务执行结果:" + cf3.get());
}

输出结果:

supplyAsync,执行完毕
whenComplete,执行完毕,上一个任务执行结果值:null,异常信息:java.lang.RuntimeException: 执行异常
发生异常,错误信息:java.lang.RuntimeException: 执行异常
任务执行结果:java.lang.RuntimeException: 执行异常
2.2.5、handle/handleAsync

handle()/handleAsync()方法,表示任务执行完成后的回调方法,有入参,有返回值。

同样的,无论任务执行成功还是失败,它都会回调。

相关的示例如下。

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行完毕");
        if(1 == 1){
            throw new RuntimeException("执行异常");
        }
        return "hello world";
    });

    // 当任务执行完成,会继续回调当前方法
    CompletableFuture<String> cf2 = cf1.handle((r, e) -> {
        System.out.println("handle,执行完毕,上一个任务执行结果值:" + r + ",异常信息:" + e.getMessage());
        return "handle";
    });
    
    System.out.println("任务执行结果:" + cf2.get());
}

输出结果:

supplyAsync,执行完毕
handle,执行完毕,上一个任务执行结果值:null,异常信息:java.lang.RuntimeException: 执行异常
任务执行结果:handle
2.2.6、exceptionally

exceptionally()方法,表示任务执行异常后的回调方法。在上文的示例中有所介绍。

最后我们还是简单的看下示例。

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync,执行开始");
        if(1 == 1){
            throw new RuntimeException("执行异常");
        }
        return "hello world";
    });

    // 监听执行时异常的回调方法
    CompletableFuture<String> cf2 = cf1.exceptionally((e) -> {
        System.out.println("发生异常,错误信息:" + e.getMessage());
        return e.getMessage();
    });

    System.out.println("任务执行结果:" + cf2.get());
}

输出结果:

supplyAsync,执行开始
发生异常,错误信息:java.lang.RuntimeException: 执行异常
任务执行结果:java.lang.RuntimeException: 执行异常

2.3、多个任务组合处理

某些场景下,如果希望获取两个不同的异步执行结果进行组合处理,可以采用多个任务组合处理方式。

CompletableFuture针对多个任务组合处理做了很多的支持,常用的组合方式有以下几种。

  • AND组合:表示将两个CompletableFuture任务组合起来,只有这两个任务都正常执行完了,才会继续执行回调任务,比如thenCombine()方法
  • OR组合:表示将两个CompletableFuture任务组合起来,只要其中一个正常执行完了,就会继续执行回调任务,比如applyToEither方法
  • AllOf组合:可以将多个CompletableFuture任务组合起来,只有所有的任务都正常执行完了,才会继续执行回调任务,比如allOf()方法
  • AnyOf组合:可以将多个CompletableFuture任务组合起来,只要其中一个任务正常执行完了,就会继续执行回调任务,比如anyOf()方法

下面我们一起来看看相关的使用示例!

2.3.1、AND组合

实现AND组合的操作方法有很多,比如runAfterBoth()thenAcceptBoth()thenCombine()等方法,它们之间的区别在于:是否带有入参、是否带有返回值。

其中thenCombine()方法支持传入参、带返回值。

相关示例如下:

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync1,执行完毕");
        return "supplyAsync1";
    });

    CompletableFuture<String> cf2 = CompletableFuture
            .supplyAsync(() -> {
                System.out.println("supplyAsync2,执行完毕");
                return "supplyAsync2";
            })
            .thenCombine(cf1, (r1, r2) -> {
                System.out.println("r1任务执行结果:" + r1);
                System.out.println("r2任务执行结果:" + r2);
                return r1 + "_" + r2;
            });

    System.out.println("任务执行结果:" + cf2.get());
}

输出结果:

supplyAsync1,执行完毕
supplyAsync2,执行完毕
r1任务执行结果:supplyAsync2
r2任务执行结果:supplyAsync1
任务执行结果:supplyAsync2_supplyAsync1
2.3.2、OR组合

实现OR组合的操作方法有很多,比如runAfterEither()acceptEither()applyToEither()等方法,区别同上。

其中applyToEither()方法支持传入参、带返回值。

相关示例如下:

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync1,执行完毕");
        return "supplyAsync1";
    });

    CompletableFuture<String> cf2 = CompletableFuture
            .supplyAsync(() -> {
                System.out.println("supplyAsync2,执行完毕");
                return "supplyAsync2";
            })
            .applyToEither(cf1, (r) -> {
                System.out.println("第一个执行成功的任务结果:" + r);
                return r + "_applyToEither";
            });

    System.out.println("任务执行结果:" + cf2.get());
}

输出结果:

supplyAsync1,执行完毕
supplyAsync2,执行完毕
第一个执行成功的任务结果:supplyAsync2
任务执行结果:supplyAsync2_applyToEither
2.3.2、AllOf组合

实现AllOf组合的操作就一个方法allOf(),可以将多个任务进行组合,只有都执行成功才会回调,回调入参为空值。

相关示例如下:

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync1,执行完毕");
        return "supplyAsync1";
    });

    CompletableFuture<String> cf2 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync2,执行完毕");
        return "supplyAsync2";
    });

    // 将多个任务,进行AND组合
    CompletableFuture<String> cf3 = CompletableFuture
            .allOf(cf1, cf2)
            .handle((r, e) -> {
                System.out.println("所有任务都执行成功,result:" +  r);
                return "over";
            });
    System.out.println(cf3.get());
}

输出结果:

supplyAsync1,执行完毕
supplyAsync2,执行完毕
所有任务都执行成功,result:null
over
2.3.3、AnyOf组合

实现AnyOf组合的操作,同样就一个方法anyOf(),可以将多个任务进行组合,只要一个执行成功就会回调,回调入参有值。

相关示例如下:

public static void main(String[] args) throws Exception {
    // 创建异步执行任务
    CompletableFuture<String> cf1 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync1,执行完毕");
        return "supplyAsync1";
    });

    CompletableFuture<String> cf2 = CompletableFuture.supplyAsync(() -> {
        System.out.println("supplyAsync2,执行完毕");
        return "supplyAsync2";
    });

    // 将多个任务,进行AND组合
    CompletableFuture<String> cf3 = CompletableFuture
            .anyOf(cf1, cf2)
            .handle((r, e) -> {
                System.out.println("某个任务执行成功,返回值:" + r);
                return "over";
            });
    System.out.println(cf3.get());
}

输出结果:

supplyAsync1,执行完毕
supplyAsync2,执行完毕
某个任务执行成功,返回值:supplyAsync1
over

三、小结

本文主要围绕CompletableFuture类相关用法进行了一次知识总结,通过CompletableFuture类可以简化异步编程,同时支持多种异步任务,按照条件组合处理,相比其它的并发工具类,操作更加强大、实用。

本篇内容比较多,如果有描述不对的地方,欢迎网友留言指出,希望本文知识总结能帮助到大家。

四、参考

1.https://www.liaoxuefeng.com/wiki/1252599548343744/1306581182447650

2.https://juejin.cn/post/6970558076642394142

标签:多线程,System,任务,详解,CompletableFuture,println,执行,out
From: https://www.cnblogs.com/dxflqm/p/18074723

相关文章

  • Maven中optional标签详解(转)
    原文:https://blog.csdn.net/weixin_43888891/article/details/130510971作者:怪咖@来源:CSDN 一、前言<dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.18</version><optio......
  • gdb调试多线程
    gdb调试多线程程序#查看进程bookpsaux|grepbook#查看线程bookps-aL|grepbook 在gdb中执行 #查看线程数infothreads#切换线程thread线程id#只运行当前线程,其他线程挂起setscheduler-lockingon#运行全部的线程setscheduler-lockingoff#指定某......
  • XML 简介及用法详解
    XML是一种用于存储和传输数据的与软件和硬件无关的工具。什么是XML?XML代表eXtensibleMarkupLanguage(可扩展标记语言)。XML是一种与HTML非常相似的标记语言。XML被设计用于存储和传输数据。XML被设计成具有自我描述性。XML不执行任何操作,也许有点难理解,但XML不执行任何操作。......
  • mysql explain 详解
    在进行mysql语句分析或优化时,通常都会用到explain语句,通过explain语句可以知道mysql的查询逻辑和是否使用索引或者索引是否生效等信息。语法格式:explainmysql语句如:explainselect*fromaccountarightjoinaccount_orderaoona.id=ao.user_idwhereao.user_id="0001";......
  • 潜水耳机哪个牌子好?潜水党必看的游泳耳机专业性能详解!
    在游泳、潜水等水上活动中,一个好的耳机可以让你更加享受水中的乐趣。而随着科技的不断发展,市面上涌现了越来越多的游泳耳机品牌和型号,让人眼花缭乱。(以下是之前测试过的游泳耳机:)那么,潜水耳机哪个牌子好呢?本文将为大家详细讲解一些专业的购物指南,帮助大家选择适合自己的潜水......
  • 数据结构——循环链表,双向链表,线性表和有序表的合并详解
    目录1.循环链表1.带尾指针循环链表的合并 代码示例:2.双向链表代码示例:  1.双向链表的插入​代码示例:2.双向链表的删除代码示例:3.单链表,循环链表,双向链表时间效率的比较4.顺序表和链表的比较 5.存储密度6.线性表的应用 1.线性表的合并​代码示例:2.有序表......
  • 多线程(代码案例: 单例模式, 阻塞队列, 生产者消费者模型,定时器)
    设计模式是什么类似于棋谱一样的东西计算机圈子里的大佬为了能让小菜鸡的代码不要写的太差针对一些典型的场景,给出了一些典型的解决方案这样小菜鸡们可以根据这些方案(ACM里面叫板子,象棋五子棋里叫棋谱,咱这里叫设计模式),略加修改,这样代码再差也差不到哪里去......
  • 为什么要学网络安全?详解3大理由!
    网络安全人才一将难求,缺口高达95%在以前,很多政企单位在进行IT部门及岗位划分时,只有研发和运维部门,安全人员直接归属到基础运维部;而现在,越来越多单位为了满足国家安全法律法规的要求,必须成立独立的网络安全部门,拉拢各方安全人才、组建SRC(安全响应中心),为自己的产品、应用......
  • GEE C13 Exploring Image Collections 影像集详解
     一、筛选和检查影像集1.1代码1//Definearegionofinterestasapointinhaikou,hainan.2//varhkPoint=ee.Geometry.Point(110.3207,20.04713);定义一个点的时候,先经度后纬度。3varhkPoint=geometry2;4//Centerthemapatthatpoint.5Map......
  • 并发支持库:多线程中的std::call_once单次调用
    std::call_once中定义template<classCallable,class...Args>voidcall_once(std::once_flag&flag,Callable&&f,Args&&...args);确保函数或者代码片段在在多线程环境下,只需要执行一次。常用的场景如Init()操作或一些系统参数的获取等。此函数在POSIX中类似p......