首页 > 其他分享 >Spark Troubleshooting

Spark Troubleshooting

时间:2022-10-13 20:32:21浏览次数:49  
标签:task reduce YARN 拉取 Troubleshooting JVM Spark 数据

1、故障排除一:控制reduce端缓冲大小以避免OOM

在Shuffle过程,reduce端task并不是等到map端task将其数据全部写入磁盘后再去拉取,而是map端写一点数据,reduce端task就会拉取一小部分数据,然后立即进行后面的聚合、算子函数的使用等操作

reduce端task能够拉取多少数据,由reduce拉取数据的缓冲区buffer来决定,因为拉取过来的数据都是先放在buffer中,然后再进行后续的处理,buffer的默认大小为48MB

reduce端task会一边拉取一边计算,不一定每次都会拉满48MB的数据,可能大多数时候拉取一部分数据就处理掉了

虽然说增大reduce端缓冲区大小可以减少拉取次数,提升Shuffle性能,但是有时map端的数据量非常大,写出的速度非常快,此时reduce端的所有task在拉取的时候,有可能全部达到自己缓冲的最大极限值,即48MB,此时,再加上reduce端执行的聚合函数的代码,可能会创建大量的对象,这可难会导致内存溢出,即OOM

如果一旦出现reduce端内存溢出的问题,我们可以考虑减小reduce端拉取数据缓冲区的大小,例如减少为12MB

在实际生产环境中是出现过这种问题的,这是典型的以性能换执行的原理。reduce端拉取数据的缓冲区减小,不容易导致OOM,但是相应的,reudce端的拉取次数增加,造成更多的网络传输开销,造成性能的下降

注意,要保证任务能够运行,再考虑性能的优化

2、故障排除二:JVM GC导致的shuffle文件拉取失败

在Spark作业中,有时会出现shuffle file not found的错误,这是非常常见的一个报错,有时出现这种错误以后,选择重新执行一遍,就不再报出这种错误

出现上述问题可能的原因是Shuffle操作中,后面stage的task想要去上一个stage的task所在的Executor拉取数据,结果对方正在执行GC,执行GC会导致Executor内所有的工作现场全部停止,比如BlockManager、基于netty的网络通信等,这就会导致后面的task拉取数据拉取了半天都没有拉取到,就会报出shuffle file not found的错误,而第二次再次执行就不会再出现这种错误

可以通过调整reduce端拉取数据重试次数和reduce端拉取数据时间间隔这两个参数来对Shuffle性能进行调整,增大参数值,使得reduce端拉取数据的重试次数增加,并且每次失败后等待的时间间隔加长

JVM GC导致的shuffle文件拉取失败如下方代码所示

val conf = new SparkConf()  .set("spark.shuffle.io.maxRetries", "60")  .set("spark.shuffle.io.retryWait", "60s")

3、故障排除四:解决算子函数返回NULL导致的问题

当Spark作业在运行过程中报错,而且报错信息中含有Serializable等类似词汇,那么可能是序列化问题导致的报错

序列化问题要注意以下三点:

1)作为RDD的元素类型的自定义类,必须是可以序列化的

2)算子函数里可以使用的外部的自定义变量,必须是可以序列化的

3)不可以在RDD的元素类型、算子函数里使用第三方的不支持序列化的类型,例如Connection

4、故障排除四:解决算子函数返回NULL导致的问题

在一些算子函数里,需要我们有一个返回值,但是在一些情况下我们不希望有返回值,此时我们如果直接返回NULL,会报错,例如Scala.Math(NULL)异常

如果你遇到某些情况,不希望有返回值,那么可以通过下述方式解决:

1)返回特殊值,不返回NULL,例如“-1”

2)在通过算子获取到了一个RDD之后,可以对这个RDD执行filter操作,进行数据过滤,将数值为-1的数据给过滤掉

3)在使用完filter算子后,继续调用coalesce算子进行优化

5、故障排除五:解决YARN-CLIENT模式导致的网卡流量激增问题

YARN-client模式的运行原理如下图所示

Spark Troubleshooting_故障排除

在YARN-client模式下,Driver启动在本地机器上,而Driver负责所有的任务调度,需要与YARN集群上的多个Executor进行频繁的通信。

假设有100个Executor, 1000个task,那么每个Executor分配到10个task,之后,Driver要频繁地跟Executor上运行的1000个task进行通信,通信数据非常多,并且通信品类特别高。这就导致有可能在Spark任务运行过程中,由于频繁大量的网络通讯,本地机器的网卡流量会激增。

注意,YARN-client模式只会在测试环境中使用,而之所以使用YARN-client模式,是由于可以看到详细全面的log信息,通过查看log,可以锁定程序中存在的问题,避免在生产环境下发生故障。

在生产环境下,使用的一定是YARN-cluster模式。在YARN-cluster模式下,就不会造成本地机器网卡流量激增问题,如果YARN-cluster模式下存在网络通信的问题,需要运维团队进行解决。

6、故障排除六:解决YARN-CLUSTER模式的JVM栈内存溢出无法执行问题

YARN-cluster模式的运行原理如下图所示

Spark Troubleshooting_spark_02

当Spark作业中包含SparkSQL的内容时,可能会碰到YARN-client模式下可以运行,但是YARN-cluster模式下无法提交运行(报出OOM错误)的情况。

YARN-client模式下,Driver是运行在本地机器上的,Spark使用的JVM的PermGen的配置,是本地机器上的spark-class文件,JVM永久代的大小是128MB,这个是没有问题的,但是在YARN-cluster模式下,Driver运行在YARN集群的某个节点上,使用的是没有经过配置的默认设置,PermGen永久代大小为82MB。

Spark SQL的内部要进行很复杂的SQL的语义解析、语法树转换等等,非常复杂,如果sql语句本身就非常复杂,那么很有可能会导致性能的损耗和内存的占用,特别是对PermGen的占用会比较大。

所以,此时如果PermGen的占用好过了82MB,但是又小于128MB,就会出现YARN-client模式下可以运行,YARN-cluster模式下无法运行的情况。

解决上述问题的方法时增加PermGen的容量,需要在spark-submit脚本中对相关参数进行设置,设置方法如下方代码清单所示。

--conf spark.driver.extraJavaOptions="-XX:PermSize=128M -XX:MaxPermSize=256M"

通过上述方法就设置了Driver永久代的大小,默认为128MB,最大256MB,这样就可以避免上面所说的问题。

7、故障排除七:解决SparkSQL导致的JVM栈内存溢出

当SparkSQL的sql语句有成百上千的or关键字时,就可能会出现Driver端的JVM栈内存溢出。

JVM栈内存溢出基本上就是由于调用的方法层级过多,产生了大量的,非常深的,超出了JVM栈深度限制的递归。(我们猜测SparkSQL有大量or语句的时候,在解析SQL时,例如转换为语法树或者进行执行计划的生成的时候,对于or的处理是递归,or非常多时,会发生大量的递归)

此时,建议将一条sql语句拆分为多条sql语句来执行,每条sql语句尽量保证100个以内的子句。根据实际的生产环境试验,一条sql语句的or关键字控制在100个以内,通常不会导致JVM栈内存溢出。

8、故障排除八:持久化与checkpoint的使用

Spark持久化在大部分情况下是没有问题的,但是有时数据可能会丢失,如果数据一旦丢失,就需要对丢失的数据重新进行计算,计算完后再缓存和使用,为了避免数据的丢失,可以选择对这个RDD进行checkpoint,也就是将数据持久化一份到容错的文件系统上(比如HDFS)。

一个RDD缓存并checkpoint后,如果一旦发现缓存丢失,就会优先查看checkpoint数据存不存在,如果有,就会使用checkpoint数据,而不用重新计算。也即是说,checkpoint可以视为cache的保障机制,如果cache失败,就使用checkpoint的数据。

使用checkpoint的优点在于提高了Spark作业的可靠性,一旦缓存出现问题,不需要重新计算数据,缺点在于,checkpoint时需要将数据写入HDFS等文件系统,对性能的消耗较大。


标签:task,reduce,YARN,拉取,Troubleshooting,JVM,Spark,数据
From: https://blog.51cto.com/u_15553407/5751991

相关文章

  • Spark任务写数据到s3,默认单线程移动数据,执行时间很长
     一、场景目前使用s3替代hdfs作为hive表数据存储,使用sparksqlinsert数据到hive表,发现一个简单的查询+插入任务,查询+insert的动作显示已经执行完,任务还在跑,直到......
  • spark+scala初始化
    内容选择这两个版本是考虑到版本稳定spark2.4.5Hadoop2.7.7scala与spark对应版本(不需要安装)先创建一个普通的maven项目(记得在Intellijidea中先安装对应的scala插件......
  • 少年,渴望玩转大数据么?艾叔带你从零起步快速掌握Spark
    "IT有得聊”是机械工业出版社旗下IT专业资讯和服务平台,致力于帮助读者在广义的IT领域里,掌握更专业、实用的知识与技能,快速提升职场竞争力。Spark学习的痛点对初学者(特别是自......
  • 数据算法--Hadoop-Spark大数据处理技巧 pdf
    高清扫描版下载链接:https://pan.baidu.com/s/1SCA5hN-0ZbEK_uHZgpBkVg点击这里获取提取码 ......
  • 故障处理Troubleshooting收集
    在服务器出现宕机、蓝屏、黑屏等问题时,不要立即重启服务器,应获取IPMIWeb页面中的Troubleshooting信息登陆BMC查看是否有Troubleshooting日志,具体收集位置见下图。有......
  • Spark3与CDH6.1.1的集成
    一、编译Spark3.0.3源码1、源码下载https://github.com/apache/spark/archive/refs/tags/v3.0.3.zip2、上传至/opt/soft目录并解压至/opt/moduleunzipspark-3.0.3.zi......
  • 深入理解Spark:核心思想与源码分析 pdf
    高清扫描版下载链接:https://pan.baidu.com/s/1HkOYrJjosNWRo0QLgQM8uA点击这里获取提取码 ......
  • Spark计算框架的优势及核心功能
    传统的离线计算常见问题是数据反馈慢,无法满足客户进行实时数据做决策的需求。如果说MapReduce计算框架的出现是为了解决离线计算问题,那么Spark计算框架的出现则解决了实时计......
  • Spark计算框架的优势及核心功能
    传统的离线计算常见问题是数据反馈慢,无法满足客户进行实时数据做决策的需求。如果说MapReduce计算框架的出现是为了解决离线计算问题,那么Spark计算框架的出现则解决了实时......
  • 【百年会员】大数据从入门到入职|Hadoop|Spark|Flink|FlinkSQL|FlinkCDC|Clickhouse|
    ​关心的问题写在最前面:1.两位数学习正版大数据课程是不是骗子?本课程大部分由《实战大数据(Hadoop+Spark+Flink)》作者本人录制,前期为了做口碑,做销量,两位数可以学习全部课......