首页 > 其他分享 >sharding-jdbc原理

sharding-jdbc原理

时间:2024-03-13 09:00:54浏览次数:28  
标签:归并 jdbc order 改写 SQL sharding 原理 id 路由

分片流程

一、sql解析

从 3.0.x 版本开始,ShardingSphere统一将SQL解析器换成了基于antlr4实现,目的是为了更方便、更完整的支持SQL,例如对于复杂的表达式、递归、子查询等语句,因为后期ShardingSphere的定位已不仅仅是数据分片功能。

抽象语法树

根据不同数据库方言所提供的字典,将其归类为关键字,表达式,字面量和操作符。 再使用语法解析器将词法解析器的输出转换为抽象语法树。

例如,以下 SQL:

Select accno,sum(bol) from account where status='1' and bol\>100 group by accno order by accno limit 1,10

二、sql路由

路由引擎的职责定位就是计算SQL应该在哪个数据库、哪个表上执行。分为分片路由和广播路由。

分片路由

用于根据分片键进行路由的场景,又细分为直接路由、标准路由和笛卡尔积路由这 3 种类型。

直接路由

满足直接路由的条件相对苛刻,它需要通过 Hint(使用 HintAPI 直接指定路由至库表)方式分片,并且是只分库不分表的前提下,则可以避免 SQL 解析和之后的结果归并。 因此它的兼容性最好,可以执行包括子查询、自定义函数等复杂情况的任意 SQL。直接路由还可以用于分片键不在 SQL 中的场景。

例如,设置用于数据库分片的键为3,

hintManager.setDatabaseShardingValue(3);

假如路由算法为 value % 2,当一个逻辑库 t_order 对应 2 个真实库 t_order_0 和 t_order_1 时,路由后 SQL 将在 t_order_1 上执行。下方是使用 API 的代码样例:

String sql = "SELECT * FROM t_order";
try (
        HintManager hintManager = HintManager.getInstance();
        Connection conn = dataSource.getConnection();
        PreparedStatement pstmt = conn.prepareStatement(sql)) {
    hintManager.setDatabaseShardingValue(3);
    try (ResultSet rs = pstmt.executeQuery()) {
        while (rs.next()) {
            //...
        }
    }
}

标准路由

标准路由是 ShardingSphere 最为推荐使用的分片方式,它的适用范围是不包含关联查询或仅包含绑定表之间关联查询的 SQL。 当分片运算符是等于号时,路由结果将落入单库(表),当分片运算符是 BETWEEN 或 IN 时,则路由结果不一定落入唯一的库(表),因此一条逻辑 SQL 最终可能被拆分为多条用于执行的真实 SQL。 举例说明,如果按照 order_id 的奇数和偶数进行数据分片,一个单表查询的 SQL 如下:

SELECT * FROM t_order WHERE order_id IN (1, 2);

那么路由的结果应为:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

绑定表的关联查询与单表查询复杂度和性能相当。举例说明,如果一个包含绑定表的关联查询的 SQL 如下:

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

那么路由的结果应为:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

可以看到,SQL 拆分的数目与单表是一致的。

笛卡尔路由

笛卡尔路由是最复杂的情况,它无法根据绑定表的关系定位分片规则,因此非绑定表之间的关联查询需要拆解为笛卡尔积组合执行。 如果上个示例中的 SQL 并未配置绑定表关系,那么路由的结果应为:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

SELECT * FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

笛卡尔路由查询性能较低,需谨慎使用。

广播路由

对于不携带分片键的 SQL,则采取广播路由的方式。根据 SQL 类型又可以划分为全库表路由、全库路由、全实例路由、单播路由和阻断路由这 5 种类型。

SQL种类

在看代码前,首先我们看下SQL的分类,因为ShardingSphere代码中很多地方都会根据这个分类来判断SQL的类型:

DML(Data Manipulation Language),数据操作类语句,包括select、insert、update、delete、selec for update、call

DAL(Data Administration Language,数据管理类语句,包括use、show databases、show tables、show colums、show createtable

DDL(Data Definition Language),数据定义类语句,包括create table、alter table、drop table、truncate table

TCL(Transaction Control Language),事务控制类语句,包括set transaction、set autocimmit、begin、commit、rollback、saveponit

DQL(Data Query Language),数据查询类语句,在ShardingSphere的antlr4文件中select属于DML,但部分类中如ShardingDQLResultMerger,将select又称为DQL。

RL(Replication Language),复制类数据,包括change master to、start slave、stop slave。

DCL( Data Control Language,数据控制语言)用于对数据访问权限进行控制,定义数据库、表、字段、用户的访问权限和安全级别。主要关键字包括 GRANT、 REVOKE 等

全库表路由

全库表路由用于处理对数据库中与其逻辑表相关的所有真实表的操作,主要包括不带分片键的 DQL 和 DML,以及 DDL 等。例如:

SELECT * FROM t_order WHERE good_prority IN (1, 10);

则会遍历所有数据库中的所有表,逐一匹配逻辑表和真实表名,能够匹配得上则执行。路由后成为

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);

SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);

SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);

SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

全库路由

全库路由用于处理对数据库的操作,包括用于库设置的 SET 类型的数据库管理命令,以及 TCL 这样的事务控制语句。 在这种情况下,会根据逻辑库的名字遍历所有符合名字匹配的真实库,并在真实库中执行该命令,例如:

SET autocommit=0;

在 t_order 中执行,t_order 有 2 个真实库。则实际会在 t_order_0 和 t_order_1 上都执行这个命令。

全实例路由

全实例路由用于 DCL 操作,授权语句针对的是数据库的实例。无论一个实例中包含多少个 Schema,每个数据库的实例只执行一次。例如:

CREATE USER [email protected] identified BY '123';

这个命令将在所有的真实数据库实例中执行,以确保 customer 用户可以访问每一个实例。

单播路由

单播路由用于获取某一真实表信息的场景,它仅需要从任意库中的任意真实表中获取数据即可。例如:

DESCRIBE t_order;

t_order 的两个真实表 t_order_0,t_order_1 的描述结构相同,所以这个命令在任意真实表上选择执行一次。

阻断路由

阻断路由用于屏蔽 SQL 对数据库的操作,例如:

USE order_db;

这个命令不会在真实数据库中执行,因为 ShardingSphere 采用的是逻辑 Schema 的方式,无需将切换数据库 Schema 的命令发送至数据库中。ShardingSphere 会根据配置进行处理,无需将此类命令发送到数据库中

三、sql改写

SQL 改写用于将逻辑 SQL 改写为在真实数据库中可以正确执行的 SQL,因此改写引擎需要用路由引擎计算得到的真正物理表名替换SQL中的逻辑表名,这样SQL才能正确执行。它包括正确性改写和优化改写两部分。

正确性改写

在包含分表的场景中,需要将分表配置中的逻辑表名称改写为路由之后所获取的真实表名称。仅分库则不需要表名称的改写。除此之外,还包括补列和分页信息修正等内容。

(1)标识符改写

需要改写的标识符包括表名称、索引名称以及 Schema 名称。

表名称改写是指将找到逻辑表在原始 SQL 中的位置,并将其改写为真实表的过程。表名称改写是一个典型的需要对 SQL 进行解析的场景。 从一个最简单的例子开始,若逻辑 SQL 为:

SELECT order_id FROM t_order WHERE order_id=1;

假设该 SQL 配置分片键 order_id,并且 order_id=1 的情况,将路由至分片表 1。那么改写之后的 SQL 应该为:

SELECT order_id FROM t_order_1 WHERE order_id=1;

在这种最简单的 SQL 场景中,是否将 SQL 解析为抽象语法树似乎无关紧要,只要通过字符串查找和替换就可以达到 SQL 改写的效果。 但是下面的场景,就无法仅仅通过字符串的查找替换来正确的改写 SQL 了:

SELECT order_id FROM t_order WHERE order_id=1 AND remarks=' t_order xxx';

正确改写的 SQL 应该是:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order xxx';

而非:

SELECT order_id FROM t_order_1 WHERE order_id=1 AND remarks=' t_order_1 xxx';

由于表名之外可能含有表名称的类似字符,因此不能通过简单的字符串替换的方式去改写 SQL。

下面再来看一个更加复杂的 SQL 改写场景:

SELECT t_order.order_id FROM t_order WHERE t_order.order_id=1 AND remarks=' t_order xxx';

上面的 SQL 将表名作为字段的标识符,因此在 SQL 改写时需要一并修改:

SELECT t_order_1.order_id FROM t_order_1 WHERE t_order_1.order_id=1 AND remarks=' t_order xxx';

而如果 SQL 中定义了表的别名,则无需连同别名一起修改,即使别名与表名相同亦是如此。例如:

SELECT t_order.order_id FROM t_order AS t_order WHERE t_order.order_id=1 AND remarks=' t_order xxx';

SQL 改写则仅需要改写表名称就可以了:

SELECT t_order.order_id FROM t_order_1 AS t_order WHERE t_order.order_id=1 AND remarks=' t_order xxx';

(2)索引改写

索引名称是另一个有可能改写的标识符。 在某些数据库中(如 MySQL、SQLServer),索引是以表为维度创建的,在不同的表中的索引是可以重名的; 而在另外的一些数据库中(如 PostgreSQL、Oracle),索引是以数据库为维度创建的,即使是作用在不同表上的索引,它们也要求其名称的唯一性。

ShardingSphere 目前还不支持在 DQL 和 DML 语句中使用 Schema。 它目前仅支持在数据库管理语句中使用 Schema,例如:

SHOW COLUMNS FROM t_order FROM order_ds;

Schema 的改写指的是将逻辑 Schema 采用单播路由的方式,改写为随机查找到的一个正确的真实 Schema。

(3)补列

a.GROUP BY 和 ORDER BY补列

需要在查询语句中补列通常由两种情况导致。 第一种情况是 ShardingSphere 需要在结果归并时获取相应数据,但该数据并未能通过查询的 SQL 返回。 这种情况主要是针对 GROUP BY 和 ORDER BY。结果归并时,需要根据 GROUP BY 和 ORDER BY 的字段项进行分组和排序,但如果原始 SQL 的选择项中若并未包含分组项或排序项,则需要对原始 SQL 进行改写。 先看一下原始 SQL 中带有结果归并所需信息的场景:

SELECT order_id, user_id FROM t_order ORDER BY user_id;

由于使用 user_id 进行排序,在结果归并中需要能够获取到 user_id 的数据,而上面的 SQL 是能够获取到 user_id 数据的,因此无需补列。

如果选择项中不包含结果归并时所需的列,则需要进行补列,如以下 SQL:

SELECT order_id FROM t_order ORDER BY user_id;

由于原始 SQL 中并不包含需要在结果归并中需要获取的 user_id,因此需要对 SQL 进行补列改写。补列之后的 SQL 是:

SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_order ORDER BY user_id;

值得一提的是,补列只会补充缺失的列,不会全部补充,而且,在 SELECT 语句中包含 * 的 SQL,也会根据表的元数据信息选择性补列。下面是一个较为复杂的 SQL 补列场景:

SELECT o.* FROM t_order o, t_order_item i WHERE o.order_id=i.order_id ORDER BY user_id, order_item_id;

我们假设只有 t_order_item 表中包含 order_item_id 列,那么根据表的元数据信息可知,在结果归并时,排序项中的 user_id 是存在于 t_order 表中的,无需补列;order_item_id 并不在 t_order 中,因此需要补列。 补列之后的 SQL 是:

SELECT o.*, order_item_id AS ORDER_BY_DERIVED_0 FROM t_order o, t_order_item i WHERE o.order_id=i.order_id ORDER BY user_id, order_item_id;

b. AVG 聚合函数补列

补列的另一种情况是使用 AVG 聚合函数。在分布式的场景中,使用 (avg1 + avg2 + avg3) / 3 计算平均值并不正确,需要改写为 (sum1 + sum2 + sum3) / (count1 + count2 + count3)。 这就需要将包含 AVG 的 SQL 改写为 SUM 和 COUNT,并在结果归并时重新计算平均值。例如以下 SQL:

SELECT AVG(price) FROM t_order WHERE user_id=1;

需要改写为:

SELECT COUNT(price) AS AVG_DERIVED_COUNT_0, SUM(price) AS AVG_DERIVED_SUM_0 FROM t_order WHERE user_id=1;

然后才能够通过结果归并正确的计算平均值。

c. INSERT 的 SQL 语句的ID补列

最后一种补列是在执行 INSERT 的 SQL 语句时,如果使用数据库自增主键,是无需写入主键字段的。 但数据库的自增主键是无法满足分布式场景下的主键唯一的,因此 ShardingSphere 提供了分布式自增主键的生成策略,并且可以通过补列,让使用方无需改动现有代码,即可将分布式自增主键透明的替换数据库现有的自增主键。 举例说明,假设表 t_order 的主键是 order_id,原始的 SQL 为:

INSERT INTO t_order (\`field1\`, \`field2\`) VALUES (10, 1);

可以看到,上述 SQL 中并未包含自增主键,是需要数据库自行填充的。ShardingSphere 配置自增主键后,SQL 将改写为:

INSERT INTO t_order (\`field1\`, \`field2\`, order_id) VALUES (10, 1, xxxxx);

改写后的 SQL 将在 INSERT FIELD 和 INSERT VALUE 的最后部分增加主键列名称以及自动生成的自增主键值。上述 SQL 中的 xxxxx 表示自动生成的自增主键值。

如果 INSERT 的 SQL 中并未包含表的列名称,ShardingSphere 也可以根据判断参数个数以及表元信息中的列数量对比,并自动生成自增主键。例如,原始的 SQL 为:

INSERT INTO t_order VALUES (10, 1);

改写的 SQL 将只在主键所在的列顺序处增加自增主键即可:

INSERT INTO t_order VALUES (xxxxx, 10, 1);

自增主键补列时,如果使用占位符的方式书写 SQL,则只需要改写参数列表即可,无需改写 SQL 本身。

(4)分页修正

从多个数据库获取分页数据与单数据库的场景是不同的。 假设每 10 条数据为一页,取第 2 页数据。在分片环境下获取 LIMIT 10, 10,归并之后再根据排序条件取出前 10 条数据是不正确的。 举例说明,若 SQL 为:

SELECT score FROM t_score ORDER BY score DESC LIMIT 1, 2;

下图展示了不进行 SQL 的改写的分页执行结果。

在这里插入图片描述

不改写SQL的分页执行结果

在这里插入图片描述

通过图中所示,想要取得两个表中共同的按照分数排序的第 2 条和第 3 条数据,应该是 95 和 90。 由于执行的 SQL 只能从每个表中获取第 2 条和第 3 条数据,即从 t_score_0 表中获取的是 90 和 80;从 t_score_1 表中获取的是 85 和 75。 因此进行结果归并时,只能从获取的 90,80,85 和 75 之中进行归并,那么结果归并无论怎么实现,都不可能获得正确的结果。

正确的做法是将分页条件改写为 LIMIT 0, 3,取出所有前两页数据,再结合排序条件计算出正确的数据。 下图展示了进行 SQL 改写之后的分页执行结果。

改写SQL的分页执行结果

在这里插入图片描述

越获取偏移量位置靠后数据,使用 LIMIT 分页方式的效率就越低。 有很多方法可以避免使用 LIMIT 进行分页。比如构建行记录数量与行偏移量的二级索引,或使用上次分页数据结尾 ID 作为下次查询条件的分页方式等。

(5)批量拆分

在使用批量插入的 SQL 时,如果插入的数据是跨分片的,那么需要对 SQL 进行改写来防止将多余的数据写入到数据库中。 插入操作与查询操作的不同之处在于,查询语句中即使用了不存在于当前分片的分片键,也不会对数据产生影响;而插入操作则必须将多余的分片键删除。 举例说明,如下 SQL:

INSERT INTO t_order (order_id, xxx) VALUES (1, 'xxx'), (2, 'xxx'), (3, 'xxx');

假设数据库仍然是按照 order_id 的奇偶值分为两片的,仅将这条 SQL 中的表名进行修改,然后发送至数据库完成 SQL 的执行 ,则两个分片都会写入相同的记录。 虽然只有符合分片查询条件的数据才能够被查询语句取出,但存在冗余数据的实现方案并不合理。因此需要将 SQL 改写为:

INSERT INTO t_order_0 (order_id, xxx) VALUES (2, 'xxx');

INSERT INTO t_order_1 (order_id, xxx) VALUES (1, 'xxx'), (3, 'xxx');

使用 IN 的查询与批量插入的情况相似,不过 IN 操作并不会导致数据查询结果错误。通过对 IN 查询的改写,可以进一步的提升查询性能。如以下 SQL:

SELECT * FROM t_order WHERE order_id IN (1, 2, 3);

改写为:

SELECT * FROM t_order_0 WHERE order_id IN (2);

SELECT * FROM t_order_1 WHERE order_id IN (1, 3);

可以进一步的提升查询性能。ShardingSphere 暂时还未实现此改写策略,目前的改写结果是:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2, 3);

SELECT * FROM t_order_1 WHERE order_id IN (1, 2, 3);

虽然 SQL 的执行结果是正确的,但并未达到最优的查询效率。

优化改写

优化改写的目的是在不影响查询正确性的情况下,对性能进行提升的有效手段。它分为单节点优化和流式归并优化。

(1)单节点优化

路由至单节点的 SQL,则无需优化改写。 当获得一次查询的路由结果后,如果是路由至唯一的数据节点,则无需涉及到结果归并。因此补列和分页信息等改写都没有必要进行。 尤其是分页信息的改写,无需将数据从第 1 条开始取,大量的降低了对数据库的压力,并且节省了网络带宽的无谓消耗。

(2)流式归并优化

它仅为包含 GROUP BY 的 SQL 增加 ORDER BY 以及和分组项相同的排序项和排序顺序,用于将内存归并转化为流式归并。 在结果归并的部分中,将对流式归并和内存归并进行详细说明。

改写引擎的整体结构划分如下图所示。

在这里插入图片描述

四、sql执行

执行引擎的职责定位是将改写后的SQL发送到对应数据库(经路由计算所得)执行的过程。 执行引擎的目标是自动化的平衡资源控制与执行效率。

连接模式

一方面是对数据库连接资源的控制保护,一方面是采用更优的归并模式达到对中间件内存资源的节省,如何处理好两者之间的关系,是 ShardingSphere 执行引擎需要解决的问题。 具体来说,如果一条 SQL 在经过 ShardingSphere 的分片后,需要操作某数据库实例下的 200 张表。 那么,是选择创建 200 个连接并行执行,还是选择创建一个连接串行执行呢?效率与资源控制又应该如何抉择呢?

针对上述场景,ShardingSphere 提供了一种解决思路。 它提出了连接模式(Connection Mode)的概念,将其划分为内存限制模式(MEMORY_STRICTLY)和连接限制模式(CONNECTION_STRICTLY)这两种类型。

内存限制模式

使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。 如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的方式并发处理,以达成执行效率最大化。 并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现内存溢出或避免频繁垃圾回收情况。

连接限制模式

使用此模式的前提是,ShardingSphere 严格控制对一次操作所耗费的数据库连接数量。 如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,那么只会创建唯一的数据库连接,并对其 200 张表串行处理。 如果一次操作中的分片散落在不同的数据库,仍然采用多线程处理对不同库的操作,但每个库的每次操作仍然只创建一个唯一的数据库连接。 这样即可以防止对一次请求对数据库连接占用过多所带来的问题。该模式始终选择内存归并。

内存限制模式适用于 OLAP 操作,可以通过放宽对数据库连接的限制提升系统吞吐量; 连接限制模式适用于 OLTP 操作,OLTP 通常带有分片键,会路由到单一的分片,因此严格控制数据库连接,以保证在线系统数据库资源能够被更多的应用所使用,是明智的选择。

自动化执行引擎

执行引擎分为准备和执行两个阶段。

准备阶段

顾名思义,此阶段用于准备执行的数据。它分为结果集分组和执行单元创建两个步骤。

结果集分组是实现内化连接模式概念的关键。执行引擎根据 maxConnectionSizePerQuery 配置项,结合当前路由结果,选择恰当的连接模式。 具体步骤如下:

  1. 将 SQL 的路由结果按照数据源的名称进行分组。
  2. 通过下图的公式,可以获得每个数据库实例在 maxConnectionSizePerQuery 的允许范围内,每个连接需要执行的 SQL 路由结果组,并计算出本次请求的最优连接模式。

在这里插入图片描述

在 maxConnectionSizePerQuery 允许的范围内,当一个连接需要执行的请求数量大于 1 时,意味着当前的数据库连接无法持有相应的数据结果集,则必须采用内存归并; 反之,当一个连接需要执行的请求数量等于 1 时,意味着当前的数据库连接可以持有相应的数据结果集,则可以采用流式归并。

每一次的连接模式的选择,是针对每一个物理数据库的。也就是说,在同一次查询中,如果路由至一个以上的数据库,每个数据库的连接模式不一定一样,它们可能是混合存在的形态。

当采用内存限制模式时,对于同一个数据源,如果逻辑表对应了 10 个真实表,那么 SQL 执行引擎会创建 10 个连接并行地执行,由于每个分片的结果集都有对应的连接进行持有,因此无需将结果集提前加载到内存中,从而有效地降低了内存占用;

当采用连接限制模式时,SQL 执行引擎只会在同一个数据源上创建一个连接,严格控制对数据库连接资源的消耗,在真实 SQL 执行之后立即将结果集加载至内存,因此会占用部分内存空间

执行阶段

该阶段用于真正的执行 SQL,它分为分组执行和归并结果集生成两个步骤。

分组执行将准备执行阶段生成的执行单元分组下发至底层并发执行引擎,并针对执行过程中的每个关键步骤发送事件。 如:执行开始事件、执行成功事件以及执行失败事件。执行引擎仅关注事件的发送,它并不关心事件的订阅者。 ShardingSphere 的其他模块,如:分布式事务、调用链路追踪等,会订阅感兴趣的事件,并进行相应的处理。

ShardingSphere 通过在执行准备阶段的获取的连接模式,生成内存归并结果集或流式归并结果集,并将其传递至结果归并引擎,以进行下一步的工作。

执行引擎的整体结构划分如下图所示。

在这里插入图片描述

五、结果归并

归并引擎的职责定位是进行结果集的合并,支持应用以标准的JDBC接口访问正确的结果集ResultSet。

ShardingSphere 支持的结果归并从功能上分为遍历、排序、分组、分页和聚合 5 种类型,它们是组合而非互斥的关系。 从结构划分,可分为流式归并、内存归并和装饰者归并。流式归并和内存归并是互斥的,装饰者归并可以在流式归并和内存归并之上做进一步的处理。

由于从数据库中返回的结果集是逐条返回的,并不需要将所有的数据一次性加载至内存中,因此,在进行结果归并时,沿用数据库返回结果集的方式进行归并,能够极大减少内存的消耗,是归并方式的优先选择。

流式归并是指每一次从结果集中获取到的数据,都能够通过逐条获取的方式返回正确的单条数据,它与数据库原生的返回结果集的方式最为契合。遍历、排序以及流式分组都属于流式归并的一种。

内存归并则是需要将结果集的所有数据都遍历并存储在内存中,再通过统一的分组、排序以及聚合等计算之后,再将其封装成为逐条访问的数据结果集返回。

装饰者归并是对所有的结果集归并进行统一的功能增强,目前装饰者归并有分页归并和聚合归并这 2 种类型。

遍历归并

它是最为简单的归并方式。 只需将多个数据结果集合并为一个单向链表即可。在遍历完成链表中当前数据结果集之后,将链表元素后移一位,继续遍历下一个数据结果集即可。

排序归并

由于在 SQL 中存在 ORDER BY 语句,因此每个数据结果集自身是有序的,因此只需要将数据结果集当前游标指向的数据值进行排序即可。 这相当于对多个有序的数组进行排序,归并排序是最适合此场景的排序算法。

ShardingSphere 在对排序的查询进行归并时,将每个结果集的当前数据值进行比较(通过实现 Java 的 Comparable 接口完成),并将其放入优先级队列。 每次获取下一条数据时,只需将队列顶端结果集的游标下移,并根据新游标重新进入优先级排序队列找到自己的位置即可。

通过一个例子来说明 ShardingSphere 的排序归并,下图是一个通过分数进行排序的示例图。

Select score from t_score order by score;

Select score from t_score_0 order by score;

Select score from t_score_1 order by score;

Select score from t_score_2 order by score;

图中展示了 3 张表返回的数据结果集,每个数据结果集已经根据分数排序完毕,但是 3 个数据结果集之间是无序的。 将 3 个数据结果集的当前游标指向的数据值进行排序,并放入优先级队列,t_score_0 的第一个数据值最大,t_score_2 的第一个数据值次之,t_score_1 的第一个数据值最小,因此优先级队列根据 t_score_0,t_score_2 和 t_score_1 的方式排序队列。

在这里插入图片描述

下图则展现了进行 next 调用的时候,排序归并是如何进行的。 通过图中我们可以看到,当进行第一次 next 调用时,排在队列首位的 t_score_0 将会被弹出队列,并且将当前游标指向的数据值(也就是 100)返回至查询客户端,并且将游标下移一位之后,重新放入优先级队列。 而优先级队列也会根据 t_score_0 的当前数据结果集指向游标的数据值(这里是 90)进行排序,根据当前数值,t_score_0 排列在队列的最后一位。 之前队列中排名第二的 t_score_2 的数据结果集则自动排在了队列首位。

在进行第二次 next 时,只需要将目前排列在队列首位的 t_score_2 弹出队列,并且将其数据结果集游标指向的值返回至客户端,并下移游标,继续加入队列排队,以此类推。 当一个结果集中已经没有数据了,则无需再次加入队列。

在这里插入图片描述

可以看到,对于每个数据结果集中的数据有序,而多数据结果集整体无序的情况下,ShardingSphere 无需将所有的数据都加载至内存即可排序。 它使用的是流式归并的方式,每次 next 仅获取唯一正确的一条数据,极大的节省了内存的消耗。

从另一个角度来说,ShardingSphere 的排序归并,是在维护数据结果集的纵轴和横轴这两个维度的有序性。 纵轴是指每个数据结果集本身,它是天然有序的,它通过包含 ORDER BY 的 SQL 所获取。 横轴是指每个数据结果集当前游标所指向的值,它需要通过优先级队列来维护其正确顺序。 每一次数据结果集当前游标的下移,都需要将该数据结果集重新放入优先级队列排序,而只有排列在队列首位的数据结果集才可能发生游标下移的操作。

分组归并

分组归并的情况最为复杂,它分为流式分组归并和内存分组归并。 流式分组归并要求 SQL 的排序项与分组项的字段以及排序类型(ASC 或 DESC)必须保持一致,否则只能通过内存归并才能保证其数据的正确性。

举例说明,假设根据科目分片,表结构中包含考生的姓名(为了简单起见,不考虑重名的情况)和分数。通过 SQL 获取每位考生的总分,可通过如下 SQL:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY name;

在分组项与排序项完全一致的情况下,取得的数据是连续的,分组所需的数据全数存在于各个数据结果集的当前游标所指向的数据值,因此可以采用流式归并。如下图所示。

在这里插入图片描述

进行归并时,逻辑与排序归并类似。 下图展现了进行 next 调用的时候,流式分组归并是如何进行的。

在这里插入图片描述

通过图中我们可以看到,当进行第一次 next 调用时,排在队列首位的 t_score_java 将会被弹出队列,并且将分组值同为 “Jerry” 的其他结果集中的数据一同弹出队列。 在获取了所有的姓名为 “Jerry” 的同学的分数之后,进行累加操作,那么,在第一次 next 调用结束后,取出的结果集是 “Jerry” 的分数总和。 与此同时,所有的数据结果集中的游标都将下移至数据值 “Jerry” 的下一个不同的数据值,并且根据数据结果集当前游标指向的值进行重排序。 因此,包含名字顺着第二位的 “John” 的相关数据结果集则排在的队列的前列。

流式分组归并与排序归并的区别仅仅在于两点:

  1. 它会一次性的将多个数据结果集中的分组项相同的数据全数取出。
  2. 它需要根据聚合函数的类型进行聚合计算。

对于分组项与排序项不一致的情况,由于需要获取分组的相关的数据值并非连续的,因此无法使用流式归并,需要将所有的结果集数据加载至内存中进行分组和聚合。 例如,若通过以下 SQL 获取每位考生的总分并按照分数从高至低排序:

SELECT name, SUM(score) FROM t_score GROUP BY name ORDER BY score DESC;

那么各个数据结果集中取出的数据与排序归并那张图的上半部分的表结构的原始数据一致,是无法进行流式归并的。

当 SQL 中只包含分组语句时,根据不同数据库的实现,其排序的顺序不一定与分组顺序一致。 但由于排序语句的缺失,则表示此 SQL 并不在意排序顺序。 因此,ShardingSphere 通过 SQL 优化的改写,自动增加与分组项一致的排序项,使其能够从消耗内存的内存分组归并方式转化为流式分组归并方案。

聚合归并

无论是流式分组归并还是内存分组归并,对聚合函数的处理都是一致的。 除了分组的 SQL 之外,不进行分组的 SQL 也可以使用聚合函数。 因此,聚合归并是在之前介绍的归并类的之上追加的归并能力,即装饰者模式。聚合函数可以归类为比较、累加和求平均值这 3 种类型。

比较类型的聚合函数是指 MAXMIN。它们需要对每一个同组的结果集数据进行比较,并且直接返回其最大或最小值即可。

累加类型的聚合函数是指 SUMCOUNT。它们需要将每一个同组的结果集数据进行累加。

求平均值的聚合函数只有 AVG。它必须通过 SQL 改写的 SUMCOUNT 进行计算,相关内容已在 SQL 改写的内容中涵盖,不再赘述。

分页归并

上文所述的所有归并类型都可能进行分页。 分页也是追加在其他归并类型之上的装饰器,ShardingSphere 通过装饰者模式来增加对数据结果集进行分页的能力。 分页归并负责将无需获取的数据过滤掉。

ShardingSphere 的分页功能比较容易让使用者误解,用户通常认为分页归并会占用大量内存。 在分布式的场景中,将 LIMIT 10000000, 10 改写为 LIMIT 0, 10000010,才能保证其数据的正确性。 用户非常容易产生 ShardingSphere 会将大量无意义的数据加载至内存中,造成内存溢出风险的错觉。 其实,通过流式归并的原理可知,会将数据全部加载到内存中的只有内存分组归并这一种情况。 而通常来说,进行 OLAP 的分组 SQL,不会产生大量的结果数据,它更多的用于大量的计算,以及少量结果产出的场景。 除了内存分组归并这种情况之外,其他情况都通过流式归并获取数据结果集,因此 ShardingSphere 会通过结果集的 next 方法将无需取出的数据全部跳过,并不会将其存入内存。

但同时需要注意的是,由于排序的需要,大量的数据仍然需要传输到 ShardingSphere 的内存空间。 因此,采用 LIMIT 这种方式分页,并非最佳实践。 由于 LIMIT 并不能通过索引查询数据,因此如果可以保证 ID 的连续性,通过 ID 进行分页是比较好的解决方案,例如:

SELECT * FROM t_order WHERE id \> 100000 AND id \<= 100010 ORDER BY id;

或通过记录上次查询结果的最后一条记录的 ID 进行下一页的查询,例如:

SELECT * FROM t_order WHERE id \> 10000000 LIMIT 10;

归并引擎的整体结构划分如下图。
在这里插入图片描述

标签:归并,jdbc,order,改写,SQL,sharding,原理,id,路由
From: https://blog.csdn.net/daniuniuniu/article/details/136578630

相关文章

  • 浅谈非内存对抗类和AI自瞄类FPS作弊程序原理及常用反反作弊措施与反作弊应对手段(上)
    一、引言    闲来无事,在浏览微信公众号的时候无意刷到了江西余江警方关于破获全国首例“AI自瞄”类外挂的案件,涉案金额达到惊人的3000余万。不得不感叹近年来AI相关科技发展之迅速及国内有关于FPS类及其他大类游戏作弊的黑产市场之大。    在工作学习之余,......
  • Elasticsearch探秘:原理剖析、高级运用与实战经验【文末送书-37】
    文章目录Elasticsearch探秘:原理剖析、高级运用与实战经验进阶使用方法数据建模与映射实战工程案例索引阻塞的种类什么时候使用阻塞?一本书讲透Elasticsearch:原理、进阶与工程实践【文末送书-37】Elasticsearch探秘:原理剖析、高级运用与实战经验Elasticsearch作为一个......
  • 自动控制原理
    closed-loopcontrolsystems闭环控制系统open-loopcontrolsystems开环控制系统linearsystems连续系统discretesystems离散系统stability稳定性steady-stateperformance稳态性能transientperformance暂态特性mathematicalmodel数学模型differential......
  • 【机器学习】贝叶斯分类器 | 分类器基本原理,朴素贝叶斯,半朴素贝叶斯,贝叶斯网
    在学习贝叶斯分类器的过程中我逐渐理解了不同视角下的机器学习过程​我们的学习本质上是对于众多的属性,x1,x2,x3到一个结果分类y,线性分类器什么的是训练集拟合一个函数从众多属性x到y,SVM是学习一个分界线划分不同的y对应的x,而贝叶斯分类器本质上是对数据集观测做统计结......
  • 揭秘Docker镜像:概念、原理、特性的全方位解读与实战常用命令解析
    在当今的云原生时代,Docker凭借其轻量级容器技术彻底改变了软件交付和部署的方式。而Docker镜像作为容器的基石,其背后的奥秘和实际应用更是值得我们深入探讨。本文将全面解析Docker镜像的概念、底层原理、独特特性以及日常运维中常用的命令,让您对Docker镜像有更深层次的理解与掌......
  • HashSet保证元素唯一性原理的探索、总结
    HashSet存储自定义类型的元素发现没有对相同的对象进行去重,没有保证元素的唯一性HashSet保证元素唯一性原理的探索对自定义类型的元素没有去重成功,考虑没有重写equals方法,去重时候,使用的是地址值来比较多个元素是否重复,考虑重写equals方法重写equals方法之后,发现没有去重成功,在eq......
  • 深入理解 Nginx:原理和基础介绍
    简介Nginx(发音为"engine-x")是一个高性能的开源Web服务器,它也可以用作反向代理服务器、负载均衡器、HTTP缓存以及作为邮件代理服务器。它的灵活性、高性能和可扩展性使其成为许多互联网公司和网站的首选服务器软件。本文将介绍Nginx的原理、基础知识以及其在互联网架构中的......
  • 深入理解 ELK 中 Logstash 的底层原理 + 填坑指南
    深入理解ELK中Logstash的底层原理+填坑指南<imgsrc="https://pic4.zhimg.com/v2-3afecd9bcad8087524ef7db1f8f51abf_b.jpg"data-rawwidth="722"data-caption=""data-size="normal"data-rawheight="500"class="origi......
  • RC4Drop算法的工作原理揭秘:加密技术的进步之路
    RC4Drop算法起源:RC4Drop算法是RC4算法的一种改进版本,旨在解决RC4算法在长时间加密过程中可能出现的密钥流偏置问题。RC4算法由RonRivest于1987年设计,是一种流密码算法,而RC4Drop算法则在此基础上加入了丢弃密钥字节的步骤,以增强安全性和随机性。RC4Drop加密解密|一个覆盖......
  • springboot-02理解 自动配置原理
    在进行springboot的多环境配置:可以选择激活那一共配置文件在properties下使用spring.profiles.active=.dev.test等在yaml下可以使用-------来进行分割环境配置测试环境server:port:8082spring:Profiles:dev/test;active:只需通过选择不同调用的环境参数进行声明即可......