python实现
import os import struct import numpy as np from nuscenes.nuscenes import NuScenes from nuscenes.utils.data_classes import LidarPointCloud import open3d as o3d nusc = NuScenes(version='v1.0-mini', dataroot='/home/cjk/downloads_1/mmdetection3d-main/data/', verbose=False) # Get some random .pcd.bin file from nuScenes. #pcd_bin_file = os.path.join(nusc.dataroot, nusc.get('sample_data', 'n008-2018-08-01-15-16-36-0400__LIDAR_TOP__1533151603547590')['filename']) pcd_bin_file = "/home/cjk/downloads_1/mmdetection3d-main/data/v1.0-mini/samples/LIDAR_TOP/n008-2018-08-28-16-43-51-0400__LIDAR_TOP__1535489306946757.pcd.bin" # Load the .pcd.bin file. pc = LidarPointCloud.from_file(pcd_bin_file) bin_pcd = pc.points.T # Reshape and get only values for x, y and z. bin_pcd = bin_pcd.reshape((-1, 4))[:, 0:3] # Convert to Open3D point cloud. o3d_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(bin_pcd)) # Save to a .pcd file. o3d.io.write_point_cloud(os.path.expanduser("/home/cjk/downloads_1/test.pcd"), o3d_pcd) # Read the saved .pcd file from the previous step. pcd = o3d.io.read_point_cloud(os.path.expanduser("/home/cjk/downloads_1/test.pcd")) out_arr = np.asarray(pcd.points) # Load the original point cloud data from nuScenes, and check that the saved .pcd matches the original data. pc = LidarPointCloud.from_file(pcd_bin_file) points = pc.points.T assert np.array_equal(out_arr, points[:, :3])
标签:bin,nuscenes,file,import,data,o3d,pcd From: https://www.cnblogs.com/xiaochouk/p/18063267