首页 > 其他分享 >基于CNN+LSTM深度学习网络的时间序列预测matlab仿真

基于CNN+LSTM深度学习网络的时间序列预测matlab仿真

时间:2024-03-01 13:01:23浏览次数:27  
标签:layers Name 卷积 序列 matlab CNN LSTM

1.算法运行效果图预览

 

 

2.算法运行软件版本

MATLAB2022a

 

3.算法理论概述

       时间序列预测是指利用历史数据来预测未来数据点或数据序列的任务。在时间序列分析中,数据点的顺序和时间间隔都是重要的信息。CNN+LSTM网络结合了卷积神经网络(CNN)的特征提取能力和长短时记忆网络(LSTM)的时序建模能力,用于处理具有复杂空间和时间依赖性的时间序列数据。

 

3.1 卷积神经网络(CNN)

        CNN通过卷积层和池化层提取输入数据的局部特征。对于时间序列数据,CNN可以有效地捕获数据中的短期模式和局部依赖关系。

 

       卷积层的操作可以表示为:

 

 

 

         其中,Zl表示第l层的卷积输出,Wl和bl分别是第l层的权重和偏置,Xl−1是第l−1层的输出,∗表示卷积操作。

 

激活函数(如ReLU)用于增加非线性:

 

 

 

其中,Al是第l层的激活输出,f是激活函数。

 

3.2 长短时记忆网络(LSTM)

        LSTM是一种特殊的循环神经网络(RNN),通过引入门控机制和记忆单元来解决长期依赖问题。在时间序列预测中,LSTM可以捕获数据中的长期模式和时序关系。

 

        LSTM的单元状态更新可以表示为:

 

 

        其中,ft​、it​和ot​分别是遗忘门、输入门和输出门的输出,C~t​是候选单元状态,Ct​是单元状态,ht​是隐藏状态,W和b是权重和偏置,σ是sigmoid激活函数,∘表示逐元素乘法。

 

3.3 CNN+LSTM网络结构

       在CNN+LSTM网络中,CNN首先用于提取输入时间序列的局部特征,然后将提取的特征作为LSTM的输入,LSTM进一步捕获时序关系并进行预测。

 

 

 

 

4.部分核心程序

function layers=func_CNN_LSTM_layer(Nfeat,Nfilter,Nout)
 
layers = [
% 输入特征
sequenceInputLayer([Nfeat 1 1])
sequenceFoldingLayer('Name','fold')
% CNN特征提取
convolution2dLayer(Nfilter,32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);
batchNormalizationLayer
eluLayer
averagePooling2dLayer(1,'Stride',Nfilter)
% 展开层
sequenceUnfoldingLayer('Name','unfold')
% 平滑层
flattenLayer
% LSTM特征学习
lstmLayer(128,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
dropoutLayer(0.25)
% LSTM输出
lstmLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
dropoutLayer(0.25)
% 全连接层
fullyConnectedLayer(Nout)
regressionLayer
];
 
layers = layerGraph(layers);
layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');

  

标签:layers,Name,卷积,序列,matlab,CNN,LSTM
From: https://www.cnblogs.com/matlabworld/p/18046741

相关文章

  • Python用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID
    原文链接:http://tecdat.cn/?p=27042原文出处:拓端数据部落公众号 该数据根据世界各国提供的新病例数据提供。  获取时间序列数据  df=pd.read_csv("C://global.csv")探索数据此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值 ......
  • matlab进行深度学习MatCovNet
    MatCovNet官网http://www.vlfeat.org/matconvnet/ 深度学习在objecttracking中的使用也越来越多,从去年的VOT结果来看,很多tracker都应用了convolution feature,整体效果都比之前的方法提高了一大截,所以学习deeplearning需要提上日程了。看了HCF以及C-COT的源码,都运用到了matl......
  • 基于最小二乘正弦拟合算法的信号校正matlab仿真,校正幅度,频率以及时钟误差,输出SNDR,
    1.算法运行效果图预览    2.算法运行软件版本matlab2022a 3.算法理论概述        在信号处理领域,正弦信号是一种常见且重要的信号形式。然而,在实际应用中,由于各种噪声和失真的影响,正弦信号的幅度、频率和相位可能会发生偏差。为了准确地恢复和分析这些信......
  • m基于深度学习的16QAM调制解调系统相位检测和补偿算法matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要        随着通信技术的飞速发展,高阶调制格式如16QAM(16-QuadratureAmplitudeModulation,16进制正交幅度调制)在高速数据传输中得到了广泛应用。然而,由于信道失真、噪声干扰等因素,接收端往往面临相......
  • 基于MATLAB深度学习工具箱的CNN卷积神经网络训练和测试
    一、理论基础    为了尽可能详细地介绍基于MATLAB深度学习工具箱的CNN卷积神经网络训练和测试,本文将按照以下内容进行说明:CNN卷积神经网络的基本原理深度学习工具箱的基本介绍CNN卷积神经网络训练的步骤和方法CNN卷积神经网络的优缺点1.CNN卷积神经网络的基本原理 ......
  • MatLab深度学习
    1.深度学习介绍公司官网有个很好的深度学习(DeepLearning)介绍文档。他们在视频中对深度学习的解释就是:DeepLearningisamachinelearningtechniquethatlearningfeaturesandtasksdirectlyfromdata.深度学习是机器学习的一种,从数据中直接学习特性和功能。深度学习......
  • MATLAB深度学习工具箱的应用
    一、MATLAB深度学习工具箱    MATLAB深度学习工具箱是一个功能强大的工具包,用于构建、训练和部署深度学习模型。它提供了各种深度学习网络和算法,包括卷积神经网络、循环神经网络、自编码器、生成对抗网络等。    MATLAB深度学习工具箱还提供了许多有用的工具和函......
  • 通过深度学习和人脸图像进行年龄段估计matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本MATLAB2022a  3.算法理论概述      随着计算机视觉和人工智能技术的快速发展,基于人脸图像的年龄估计成为了研究热点之一。通过深度学习和人脸图像分析技术,我们可以有效地从人脸图像中提取出年龄相关的特征,进而实......
  • RNN循环神经网络&LSTM长短期记忆网络&GRU
    个人学习使用,内容来源于网络,侵权删1.基本原理传统网络的结构:RNN的结构:使用场景:语音识别,要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别;自然语言处理,要依次读取各个单词,识别某段文字的语义这些场景都有一个特点,就是都与时间序列有关,且输入的序列数......
  • m基于深度学习的QPSK调制解调系统相位检测和补偿算法matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:  2.算法涉及理论知识概要         在数字通信中,正交相移键控(QPSK)是一种高效的调制方法,它能够在有限的带宽内传输更多的信息。然而,在实际通信过程中,由于信道噪声、多径效应等因素,接收到的QPSK信号可能会出现相位偏移,导......