首页 > 其他分享 >P9399 「DBOI」Round 1 人生如树

P9399 「DBOI」Round 1 人生如树

时间:2024-02-28 17:11:06浏览次数:17  
标签:DBOI int cnt read 如树 tp0 array include Round

题意

一棵树,两个操作,每个点有点权。

  • 给定 \(v, w\)。新建一个点 \(u'\) 点权为 \(w\),连接 \(u' \to v\)。

  • 询问 \(u_1 \to v_1\) 的点权的序列 \(a\),使 \(a_i \to a_i + i\),与 \(u_2 \to v_2\) 的点权的序列 \(b\) 的最长公共前缀。

Sol

其实这道题并没有什么好说的,看懂题基本就得出做法了。

主要是细节有点多。

注意到这个 \(a_i + i\) 的形式很能哈希,发现哈希就直接能做。

由于要二分 LCP,会多挂只 \(log\),树剖上线段树二分是不好做的。

考虑先把 LCA 求出来,然后考虑倍增分别维护这两条链的哈希。

做完了。

Code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#include <tuple>
#include <cmath>
#include <tuple>
#include <vector>
#define int long long
#define tupl tuple <int, int, int, int>
using namespace std;
#ifdef ONLINE_JUDGE

#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;

#endif
int read() {
	int p = 0, flg = 1;
	char c = getchar();
	while (c < '0' || c > '9') {
		if (c == '-') flg = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9') {
		p = p * 10 + c - '0';
		c = getchar();
	}
	return p * flg;
}
void write(int x) {
	if (x < 0) {
		x = -x;
		putchar('-');
	}
	if (x > 9) {
		write(x / 10);
	}
	putchar(x % 10 + '0');
}
const int N = 2e5 + 5, M = 4e5 + 5, inf = 2e18;

namespace G {

array <int, N> fir;
array <int, M> nex, to;

int cnt = 1;

void add(int x, int y) {
	cnt++;
	nex[cnt] = fir[x];
	to[cnt] = y;
	fir[x] = cnt;
}

}

namespace Esl {

array <int, N> fa, dep;
array <int, M> idx, dfn;
int cnt;

void dfs(int x) {
	cnt++;
	dfn[x] = cnt;
	idx[cnt] = x;
	for (int i = G::fir[x]; i; i = G::nex[i]) {
		if (G::to[i] == fa[x]) continue;
		fa[G::to[i]] = x;
		dep[G::to[i]] = dep[x] + 1;
		dfs(G::to[i]), cnt++, idx[cnt] = x;
	}
}

array <array <int, 22>, M> sT;
array <int, M> lg;

void init() {
	for (int i = 1; i <= cnt; i++)
		lg[i] = log2(i), sT[i].fill(inf);
	for (int i = 1; i <= cnt; i++)
		sT[i][0] = dfn[idx[i]];
	for (int j = 1; j <= 21; j++)
		for (int i = 1; i + (1 << j) - 1 <= cnt; i++)
			sT[i][j] = min(sT[i][j - 1], sT[i + (1 << (j - 1))][j - 1]);
}

int query(int l, int r) {
	tie(l, r) = minmax(dfn[l], dfn[r]);
	int len = lg[r - l + 1];
	return idx[min(sT[l][len], sT[r - (1 << len) + 1][len])];
}

}

array <array <int, 22>, N> f1, f2;
array <array <int, 22>, N> fa;
array <int, N> idx;

void dfs(int x) {
	fa[x][0] = Esl::fa[x];
	for (int i = 1; i <= 21; i++) {
		fa[x][i] = fa[fa[x][i - 1]][i - 1];
		f1[x][i] = idx[1 << (i - 1)] * f1[x][i - 1] + f1[fa[x][i - 1]][i - 1];
		f2[x][i] = idx[1 << (i - 1)] * f2[fa[x][i - 1]][i - 1] + f2[x][i - 1];
	}
	for (int i = G::fir[x]; i; i = G::nex[i]) {
		if (G::to[i] == Esl::fa[x]) continue;
		dfs(G::to[i]);
	}
}

int getfa(int x, int k) {
	for (int i = 21; ~i; i--)
		if (k & (1 << i))
			x = fa[x][i];
	return x;
}

int gethash(int u, int v, int k) {
	using Esl::dep;
	int lcA = Esl::query(u, v);
	int tp1 = min(dep[u] - dep[lcA] + 1, k), tp2 = k - tp1;
	int _u = u, hs1 = 0;
	for (int i = 21; ~i; i--)
		if (tp1 & (1 << i))
			hs1 = f1[_u][i] + hs1 * idx[1 << i], _u = fa[_u][i];
	int _v = getfa(v, dep[v] - dep[lcA] - tp2), hs2 = 0, now = 0;
	for (int i = 21; ~i; i--)
		if (tp2 & (1 << i))
			hs2 = hs2 + f2[_v][i] * idx[now], _v = fa[_v][i], now |= (1 << i);
	return hs1 * idx[k - tp1] + hs2;
}

vector <tupl> qrl;
array <int, N> s, tp0;

signed main() {
	int n = read(), m = read(), id = read();
	for (int i = 1; i <= n; i++)
		s[i] = read();
	for (int i = 2, x, y; i <= n; i++)
		x = read(), y = read(), G::add(x, y), G::add(y, x);
	for (int i = 1; i <= m; i++) {
		int op = read();
		if (op == 1) {
			tupl tp0;
			get <0>(tp0) = read(), get <1>(tp0) = read();
			get <2>(tp0) = read(), get <3>(tp0) = read();
			qrl.push_back(tp0);
		}
		else {
			int x = read(), y = read();
			n++;
			G::add(n, x), G::add(x, n), s[n] = y;
		}
	}
	Esl::dfs(1), Esl::init();
	for (int i = 1; i <= n; i++)
		f1[i][0] = f2[i][0] = s[i];
	idx[0] = 1;
	for (int i = 1; i <= 2e5; i++)
		idx[i] = idx[i - 1] * 131ll;
	for (int i = 1; i <= 2e5; i++)
		tp0[i] = tp0[i - 1] * 131ll + i;
	dfs(1);
	/* write(gethash(1, 6, 4)), puts("@"); */
	/* exit(0); */
	/* write(gethash(8, 10, 2)), puts("@"); */
	for (auto [u1, v1, u2, v2] : qrl) {
		int lcA1 = Esl::query(u1, v1), lcA2 = Esl::query(u2, v2);
		using Esl::dep;
		int r = min(dep[u1] + dep[v1] - 2 * dep[lcA1],
					dep[u2] + dep[v2] - 2 * dep[lcA2]) + 1;
		int l = 1, ans = 0;
		while (l <= r) {
			int mid = (l + r) >> 1;
			/* write(l), putchar(32); */
			/* write(r), putchar(32); */
			/* write(mid), puts(""); */
			if (gethash(u1, v1, mid) + tp0[mid] ==
				gethash(u2, v2, mid))
				l = mid + 1, ans = mid;
			else
				r = mid - 1;
		}
		write(ans), puts("");
	}
	return 0;
}

标签:DBOI,int,cnt,read,如树,tp0,array,include,Round
From: https://www.cnblogs.com/cxqghzj/p/18041097

相关文章

  • 题解 CF1523H Hopping Around the Array
    \(\texttt{link}\)题意数轴上有\(n\)个点,每个点有属性\(a_i\),在第\(i\)个点可以花费\(1\)的步数移动至\([i,i+a_i]\)中任意一个点。定义一次操作为选出一个\(i\),使\(a_i\getsa_i+1\)。\(q\)组询问,每次给出\(l,r,k\),求有\(k\)次操作机会时,从第\(l\)个点走到......
  • Codeforces Round 909 (Div
    CodeforcesRound909(Div.3)A.GamewithIntegers显然就是还要不是三的倍数就能赢!intn; cin>>n; intk; while(n--) { cin>>k; if(k%3==0){ cout<<"Second"<<endl; }else{ cout<<"First"<<endl; } }B......
  • Codeforces Round 905 (Div
    CodeforcesRound905(Div.3)A.Morning此题将其看为光标一直移动,其中移动次数就是坐标之差的绝对值,0看做10,由于其显示也需一次操作,所以加上四。#include<bits/stdc++.h>usingnamespacestd;intmain(){ intt; cin>>t; while(t--) { intarr[4],count=0; ......
  • Codeforces Round 900 (Div
    CodeforcesRound900(Div.3)A.HowMuchDoesDaytonaCost?这个题简单,在子段上最常见的元素其实只要这个元素出现就行intt; cin>>t; intn,k; while(t--) { cin>>n>>k; intarr[n]; intout=0; for(inti=0;i<n;i++) { cin>>arr[i]; } for(......
  • Codeforces Round 888 (Div
    CodeforcesRound888(Div.3)A.EscalatorConversations推导即可,判断条件就是abs(h[i]-H)%k==0&&abs(h[i]-H)/k<m&&h[i]!=H,先要整除再能相隔abs(h[i]-H)/k个台阶谁高谁矮任意不影响,但是最后这个我就没注意到h[i]!=H小卡一会。#include<bits/stdc++.h>usingnamespacestd;......
  • Educational Codeforces Round 162 (Rated for Div. 2)
    Preface开学了没时间组队训练就抽空把之前欠下的CF补一补这场当时玩《拔作岛》上头了忘记有比赛了,等想起来的时候已经快结束了就没现场打赛后补题发现A~E都很简单,F的话一个地方没太想清看了题解才会A.MovingChips签到,找一个极小的且包含了所有\(1\)的区间,这个区间中\(0\)......
  • Grounding DINO
    GroundingDINOMarryingDINOwithGroundedPre-TrainingforOpen-SetObjectDetection目录GroundingDINOMarryingDINOwithGroundedPre-TrainingforOpen-SetObjectDetectionAbstract1.Introduction2.RelatedWork3.GroundingDINO3.1.FeatureExtractionandEnh......
  • 2024.2.26 LGJ Round
    A给出一个\(n\)个顶点的有向图,求有多少个长度小于\(k\)的环(环可以经过重复的结点)。两个环不同当且仅当顶点序列不同。\(n\le35,k\le1e6\)。矩阵乘法模板题。枚举起点,求出走\(\lek\)步到达自己的方案数。只需要记录\(f_i\)表示以\(i\)结尾的路径个数,以及\(g_i\)......
  • 牛客周赛 Round 34
    牛客周赛Round34比赛链接感觉比以往难度有些大,但是大佬们该强的还是很强啊小红的字符串生成思路就两个字符,如果字符相同只能组成两种,不同则可以组成四种Code#include<bits/stdc++.h>usingnamespacestd;#defineintlonglong#defineall(x)x.begin()+1,x.end()#de......
  • CF1923 Educational Codeforces Round 162 (Rated for Div. 2)
    C.FindB给出一个数组A,对于q个询问,每个询问给出[l,r],对于A的子数组[l,r],问是否存在一个相同大小的数组B,使得两个数组的和相同,且任意相同下标的元素不同?Solution:A中任意一个大于1的元素,可以把他变成1,多余的那部分给到其他位置的元素上(如最后一个)对于等于1的元素,把......