据说很好用,先写一个例子看看:
import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 构造简单的时间序列数据集 def generate_time_series(): time = np.arange(0, 100, 0.1) amplitude = np.sin(time) return amplitude # 将时间序列数据转换为序列样本 def create_sequences(data, seq_length): sequences = [] for i in range(len(data) - seq_length): seq = data[i:i + seq_length] label = data[i + seq_length] sequences.append((seq, label)) return sequences # 定义 Transformer 模型 class TransformerModel(nn.Module): def __init__(self, input_size, output_size, num_layers, heads, hidden_size): super(TransformerModel, self).__init__() self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_size, nhead=heads, dim_feedforward=hidden_size) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers) self.decoder = nn.Linear(input_size, output_size) def forward(self, src): src = src.unsqueeze(0) # 添加批次维度 output = self.transformer_encoder(src) output = self.decoder(output[-1]) # 取最后一个时间步的输出 return output # 定义训练函数 def train(model, criterion, optimizer, epochs, train_loader): model.train() for epoch in range(epochs): running_loss = 0.0 for inputs, labels in train_loader: optimizer.zero_grad() outputs = model(inputs.float()) loss = criterion(outputs.squeeze(), labels.float()) loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss}") # 设置随机种子,保证实验的可复现性 torch.manual_seed(0) np.random.seed(0) # 生成时间序列数据并创建序列样本 data = generate_time_series() seq_length = 10 sequences = create_sequences(data, seq_length) # 将序列样本划分为训练集和测试集 train_size = int(len(sequences) * 0.8) train_data = sequences[:train_size] test_data = sequences[train_size:] # 准备训练数据加载器 train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True) # 定义模型和优化器 model = TransformerModel(input_size=seq_length, output_size=1, num_layers=2, heads=2, hidden_size=128) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 train(model, criterion, optimizer, epochs=20, train_loader=train_loader) # 测试模型 model.eval() # 测试所有测试数据 test_inputs = torch.tensor([test_data[i][0] for i in range(len(test_data))]).float() with torch.no_grad(): predicted = model(test_inputs).squeeze().numpy() test_labels = [test_data[i][1] for i in range(len(test_data))] # 可视化预测结果 plt.plot(predicted, label='predicted') plt.plot(test_labels, label='test') plt.legend() plt.show()
标签:Transformer,seq,train,例子,sequences,test,data,size From: https://www.cnblogs.com/kingkaixuan/p/18039340