题目链接:排队
水紫,\(n\) 不大,树套树或者分块都能做。分块的话,最优序列分块套套值域分块最优。观察到是可差性问题维护,即权值数量维护,那我们就 树状数组套权值线段树 即可。由于 \(n\) 不大,我们可以不用回收标记,直接数组空间开大点就行。我们预处理出初始逆序对,每一次操作都是基于它的差分变化,讨论变化即可。预处理树套树或者普通 bit 都行。变化,先保证下标为 \(i\le j\),不满足就 \(swap\) 一下,讨论下,如果 \([i,j]\) 之间有数,当做 \([l+1,r-1]\) 之间有数,我们考虑一次交换操作的贡献变化,计算出分别大于小于 \(l\) 处数的数数量,和 \(r\) 处的,很显然,\(l\) 处 \([l+1,r-1]\) 比 \(a[l]\) 小的数贡献没了,多了比它大的数,\(r\) 处则相反。最后考虑 \(a[l]\) 和 \(a[r]\) 的贡献变化就行了,顺便更新树套树。
参照代码
#include <bits/stdc++.h>
// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
#define isPbdsFile
#ifdef isPbdsFile
#include <bits/extc++.h>
#else
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>
#endif
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
}
template <typename T>
T lowBit(T x)
{
return x & -x;
}
template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
}
template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
}
template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
}
template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
}
template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
}
template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
}
template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
}
template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three;
bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
}
T3() { one = tow = three = 0; }
T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
};
template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
}
template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
}
constexpr int N = 1e5 + 10;
constexpr int MX = 1e9 + 1;
int n, q;
struct
{
int tot;
struct In
{
int left, right, cnt;
} in[N << 6];
#define left(x) in[x].left
#define right(x) in[x].right
#define cnt(x) in[x].cnt
void add(int& curr, const int pos, const int l = 0, const int r = MX)
{
if (!curr)curr = ++tot;
cnt(curr) += pos > 0 ? 1 : -1;
const int mid = l + r >> 1;
if (l == r)return;
if (abs(pos) <= mid)add(left(curr), pos, l, mid);
else add(right(curr), pos, mid + 1, r);
}
int query(const int curr, const int l, const int r, const int s = 0, const int e = MX)
{
if (!curr)return 0;
const int mid = s + e >> 1;
if (l <= s and e <= r)return cnt(curr);
int ans = 0;
if (l <= mid)ans += query(left(curr), l, r, s, mid);
if (r > mid)ans += query(right(curr), l, r, mid + 1, e);
return ans;
}
int root[N];
void Add(int x, const int val)
{
while (x <= n)add(root[x], val), x += lowBit(x);
}
int Query(int x, const int l, const int r)
{
int ans = 0;
while (x)ans += query(root[x], l, r), x -= lowBit(x);
return ans;
}
int QueryLR(const int l, const int r, const int L, const int R)
{
return Query(r, L, R) - Query(l - 1, L, R);
}
} seg;
ll ans;
int a[N];;
inline void solve()
{
cin >> n;
forn(i, 1, n)
{
cin >> a[i];
ans += seg.Query(i - 1, a[i] + 1, MX);
seg.Add(i, a[i]);
}
cout << ans << endl;
cin >> q;
while (q--)
{
int l, r;
cin >> l >> r;
if (l > r)swap(l, r);
if (r - l > 1)
{
const int mxL = seg.QueryLR(l + 1, r - 1, a[l] + 1, MX);
const int mxR = seg.QueryLR(l + 1, r - 1, a[r] + 1, MX);
const int miL = seg.QueryLR(l + 1, r - 1, 0, a[l] - 1);
const int miR = seg.QueryLR(l + 1, r - 1, 0, a[r] - 1);
ans += mxL - miL + miR - mxR;
}
seg.Add(l, -a[l]), seg.Add(r, a[l]);
seg.Add(r, -a[r]), seg.Add(l, a[r]);
ans -= a[l] > a[r];
ans += a[l] < a[r];
swap(a[l], a[r]);
cout << ans << endl;
}
}
signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}