首页 > 其他分享 >美团面试:Kafka如何处理百万级消息队列?

美团面试:Kafka如何处理百万级消息队列?

时间:2024-02-20 19:22:41浏览次数:37  
标签:队列 美团 Kafka props put new kafka my

美团面试:Kafka如何处理百万级消息队列?

在今天的大数据时代,处理海量数据已成为各行各业的标配。特别是在消息队列领域,Apache Kafka 作为一个分布式流处理平台,因其高吞吐量、可扩展性、容错性以及低延迟的特性而广受欢迎。但当面对真正的百万级甚至更高量级的消息处理时,如何有效地利用 Kafka,确保数据的快速、准确传输,成为了许多开发者和架构师思考的问题。本文将深入探讨 Kafka 的高级应用,通过10个实用技巧,帮助你掌握处理百万级消息队列的艺术。

引言

在一个秒杀系统中,瞬时的流量可能达到百万级别,这对数据处理系统提出了极高的要求。Kafka 作为消息队列的佼佼者,能够胜任这一挑战,但如何发挥其最大效能,是我们需要深入探讨的。本文不仅将分享实用的技巧,还会提供具体的代码示例,帮助你深入理解和应用 Kafka 来处理大规模消息队列。

正文

1、利用 Kafka 分区机制提高吞吐量

Kafka 通过分区机制来提高并行度,每个分区可以被一个消费者组中的一个消费者独立消费。合理规划分区数量,是提高 Kafka 处理能力的关键。

Properties props = new Properties();
props.put("bootstrap.servers", "kafka-broker1:9092,kafka-broker2:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

Producer<String, String> producer = new KafkaProducer<>(props);
// 发送消息
for(int i = 0; i < 1000000; i++) {
    producer.send(new ProducerRecord<String, String>("my-topic", Integer.toString(i), "message-" + i));
    // my-topic:目标主题
    // Integer.toString(i):消息的键(key),这里用作分区依据
    // "message-" + i:消息的值(value)
}
producer.close();

`

2、合理配置消费者组以实现负载均衡

在 Kafka 中,消费者组可以实现消息的负载均衡。一个消费者组中的所有消费者共同消费多个分区的消息,但每个分区只能由一个消费者消费。

Properties props = new Properties();
props.put("bootstrap.servers", "kafka-broker1:9092,kafka-broker2:9092");
props.put("group.id", "my-consumer-group");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("my-topic"));
// 订阅主题
while (true) {
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
    for (ConsumerRecord<String, String> record : records) {
        System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        // 处理消息
    }
}

3、使用 Kafka Streams 进行实时数据处理

Kafka Streams 是一个客户端库,用于构建实时应用程序和微服务,其中输入和输出数据都存储在 Kafka 中。你可以使用 Kafka Streams 来处理数据流。

StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> textLines = builder.stream("my-input-topic");
KTable<String, Long> wordCounts = textLines
    .flatMapValues(textLine -> Arrays.asList(textLine.toLowerCase().split("\\W+")))
    .groupBy((key, word) -> word)
    .count(Materialized.as("counts-store"));
wordCounts.toStream().to("my-output-topic", Produced.with(Serdes.String(), Serdes.Long()));

KafkaStreams streams = new KafkaStreams(builder.build(), props);
streams.start();

4、优化 Kafka 生产者和消费者的配置

通过调整 Kafka 生产者和消费者的配置,如 batch.size, linger.ms, buffer.memory 等,可以显著提高 Kafka 的性能。

// 生产者配置优化
props.put("linger.ms", 10);
props.put("batch.size", 16384);
props.put("buffer.memory", 33554432);

// 消费者配置优化
props.put("fetch.min.bytes", 1024);
props.put("fetch.max.wait.ms", 100);

5、使用压缩技术减少网络传输量

Kafka 支持多种压缩技术,如 GZIP、Snappy、LZ4、ZSTD,可以在生产者端进行配置,以减少数据在网络中的传输量。

props.put("compression.type", "snappy");

6、利用 Kafka Connect 集成外部系统

Kafka Connect 是用于将 Kafka 与外部系统(如数据库、键值存储、搜索引擎等)连接的框架,可以实现数据的实时导入和导出。

// 以连接到MySQL数据库为例
// 实际上需要配置Connect的配置文件
{
  "name": "my-connector",
  "config": {
    "connector.class": "io.confluent.connect.jdbc.JdbcSinkConnector",
    "tasks.max": "1",
    "topics": "my-topic",
    "connection.url": "jdbc:mysql://localhost:3306/mydb",
    "key.converter": "org.apache.kafka.connect.json.JsonConverter",
    "value.converter": "org.apache.kafka.connect.json.JsonConverter",
  }
}

7、监控 Kafka 性能指标

监控 Kafka 集群的性能指标对于维护系统的健康状态至关重要。可以使用 JMX 工具或 Kafka 自带的命令行工具来监控。

// 使用JMX监控Kafka性能指标的示例代码
//具体实现需要根据监控工具的API进行

8、实现高可用的 Kafka 集群

确保 Kafka 集群的高可用性,需要合理规划 Zookeeper 集群和 Kafka broker 的部署,以及配置恰当的副本数量。

// 在Kafka配置文件中设置副本因子
broker.id=0
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=2
transaction.state.log.replication.factor=2
transaction.state.log.min.isr=2
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
zookeeper.connect=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181
zookeeper.connection.timeout.ms=6000

9、使用 Kafka 的事务功能保证消息的一致性

Kafka 0.11 版本引入了事务功能,可以在生产者和消费者之间保证消息的一致性。

props.put("transactional.id", "my-transactional-id");
Producer<String, String> producer = new KafkaProducer<>(props);
producer.initTransactions();

try {
    producer.beginTransaction();
    for(int i = 0; i < 100; i++) {
        producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), "value-" + i));
    }
    producer.commitTransaction();
} catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {
    producer.abortTransaction();
} catch (KafkaException e) {
    // 处理异常
}

10、深入理解 Kafka 的内部工作原理

深入理解 Kafka 的内部工作原理,如分区策略、消息存储机制、消费者偏移量管理等,对于优化 Kafka 应用至关重要。

总结

Kafka 在处理百万级消息队列方面拥有无与伦比的能力,但要充分发挥其性能,需要深入理解其工作原理并合理配置。通过本文介绍的10个实用技巧及其代码示例,相信你已经有了处理百万级消息队列的信心和能力。记住,实践是检验真理的唯一标准,不妨在实际项目中尝试应用这些技巧,你会发现 Kafka 的强大功能及其对业务的巨大帮助。

最后说一句(求关注,求赞,别白嫖我)

最近无意间获得一份阿里大佬写的刷题笔记,一下子打通了我的任督二脉,进大厂原来没那么难。

这是大佬写的, 7701页的BAT大佬写的刷题笔记,让我offer拿到手软

项目文档&视频:

开源:项目文档 & 视频 Github-Doc

本文,已收录于,我的技术网站 aijiangsir.com,有大厂完整面经,工作技术,架构师成长之路,等经验分享

求一键三连:点赞、分享、收藏

点赞对我真的非常重要!在线求赞,加个关注我会非常感激!

标签:队列,美团,Kafka,props,put,new,kafka,my
From: https://www.cnblogs.com/jiang-xiao-bei/p/18023871

相关文章

  • Kafka
    Kafka架构图:相关概念如下:Producer:Producer即生产者,消息的产生者,是消息的入口。kafkacluster:Broker:Broker是kafka实例,每个服务器上有一个或多个kafka的实例,我们姑且认为每个broker对应一台服务器。每个kafka集群内的broker都有一个不重复的编号,如图中的broker-0、broker-1等…......
  • C语言循环队列详解
    前言相比于链队列,循环队列有着内存固定,效率高等特点,因而广泛应用于计算机的各个层面。本文主要介绍循环队列的概念和特点,列举一些循环队列的应用场景,以及给出用数组用C语言实现循环队列的代码。一、什么是循环队列?循环队列是一种特殊的线性表,特殊之处在于它只允许在表......
  • python pyKafka
    1importjson2importtraceback3fromdatetimeimportdatetime4importtime5frompykafkaimportKafkaClient6fromutilsimport*78#生成报文信息:process_message_event报文9defcreate_data():10data={11"mess......
  • Kafka 消费者
    1.Kafka消费方式pull(拉)模式:consumer采用从broker中主动拉取数据。Kafka采用这种方式。push(推)模式:Kafka没有采用这种方式,因为由broker决定消息发送速率,很难适应所有消费者的消费速率。例如推送的速度是50m/s,Consumer1、Consumer2就来不及处理消息。pull模式不足之处是,如果......
  • 学习笔记#5:单调队列优化&斜率优化
    学习笔记#5:单调队列优化&斜率优化单调队列首先要搞懂什么是单调队列。单调队列是一种求区间最值问题的一种方式,与其他RSQ问题的求解方法不同的是,它更善于解决滑动窗口式的RSQ问题,一般来说,假设我们要维护最大值,则需维护一个单调递减的队列,这样队首最大,每次取队首即可。而当......
  • RabbitMQ 使用细节 → 优先级队列与ACK超时
    开心一刻今天坐在太阳下刷着手机老妈走过来问我:这么好的天气,怎么没出去玩我:我要是有钱,你都看不见我的影子老妈:你就不知道带个碗,别要边玩?我:......优先级队列说到队列,相信大家一定不陌生,是一种很基础的数据结构,它有一个很重要的特点:先进先出但......
  • Kafka King 推荐一款漂亮、现代、实用的kafka客户端
    KafkaKing一个漂亮、现代、实用的kafka客户端,使用pythonflet、flutter构建。Github主页:https://github.com/Bronya0/Kafka-King下载:https://github.com/Bronya0/Kafka-King/releases功能清单查看集群节点列表创建主题(支持批量)、删除主题、支持根据消费者组统计每个topic......
  • 栈和队列cal
    栈与队列理论基础我想栈和队列的原理大家应该很熟悉了,队列是先进先出,栈是先进后出。那么我这里再列出四个关于栈的问题,大家可以思考一下。以下是以C++为例,使用其他编程语言的同学也对应思考一下,自己使用的编程语言里栈和队列是什么样的。C++中stack是容器么?我们使用的stack是......
  • 栈和队列labuladong
    平衡括号串(⼀)先来个简单的,⼒扣第921题「使括号有效的最少添加」:给你输⼊⼀个字符串s,你可以在其中的任意位置插⼊左括号(或者右括号),请问你最少需要⼏次插⼊才能使得s变成⼀个有效的括号串?⽐如说输⼊s="())(",算法应该返回2,因为我们⾄少需要插⼊两次把s变成"(())......
  • 彻底搞定栈和队列
    栈和队列都是C++中的一种线性数据结构,这一篇博客,我们就来学习学习关于这两个数据结构的知识栈什么是栈栈(Stack)是一种后进先出(LastInFirstOut)的线性数据结构,这种数据结构简称为LIFO表,由于其特殊性,这种数据结构经常被用于关于括号匹配以及字符串解码等问题,当然这种题目可以出......