树形dp,又称树状dp,即在树上进行的dp,在设计动态规划算法时,一般就以节点从深到浅(子树从小到大)的顺序作为dp的“阶段”,dp的状态表示中,第一维通常是节点编号(代表以该节点为根的子树)。大多数时候,我们采用递归的方式实现树形动态规划。对于每个节点x,先递归在他的每个子节点上进行dp,在回溯时从子节点向节点x,进行状态转移。
例题:
没有上司的舞会(Acwing 285)
题目描述
Ural 大学有 N 个职员,编号为 1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,
父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐
指数最大。但是,没有职员愿和直接上司一起与会。
输入格式
第一行一个整数 N。(1<=N<=6000) 接下来 N 行,第 i+1 行表示 i 号职员的快乐指数 Ri (-128<=Ri<=127)
接下来 N-1 行,每行输入一对整数 L,K。表示 K 是 L 的直接上司。 最后一行输入 0,0。
输出格式
输出最大的快乐指数。
样例
样例输入
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
样例输出
5
思路:
所有点形成一个森林,设f[v][0]表示v为根的子树如果v 不参加舞会,能得到的最大快乐指数,f[v][1]表示v为根的子树如果v参加舞会,能得到的最大快乐指数。那么在计算f[v]的时候,可以先递归计算其所有孩子的f值,然后考虑f[v],对于f[v][0],由于v没参加,所以其子树树根可以参加也可以不参加,所以
f [v] [0]=∑ v → u max {f [u][0],f[u][1]}
对于f[v][1],由于v参加了,所以其所有子树树根都不能参加,所以
f [v][1]=∑ v → u f[u][0]
最后对于所有树根vi ,求一下∑ i max {f[vi][0],f [vi] [1]} 即为答案。
#include <bits/stdc++.h>
#define N 10010
using namespace std;
vector<int> son[N];
int f[N][2],v[N],h[N],n;
void dp(int x){
f[x][0]=0;
f[x][1]=h[x];
for(int i=0;i<son[x].size();i++){
int y=son[x][i];
dp(y);
f[x][0]+=max(f[y][0],f[y][1]);
f[x][1]+=f[y][0];
}
}
int main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>h[i];
for(int i=1;i<n;i++){
int x,y;
cin>>x>>y;
v[x]=1;
son[y].push_back(x);
}
int root;
for(int i=1;i<=n;i++)
if(!v[i]){
root=i;
break;
}
dp(root);
cout<<max(f[root][0],f[root][1])<<endl;
}
#一名爱玩狂铁的oier#
标签:子树,int,树形,为根,动态,节点,dp From: https://www.cnblogs.com/hzoiwzs/p/18018381