首页 > 其他分享 >【阅读笔记】边缘损耗率评价指标《A New Hardware-Efficient Algorithm and Reconfigurable Architecture for Image Contras

【阅读笔记】边缘损耗率评价指标《A New Hardware-Efficient Algorithm and Reconfigurable Architecture for Image Contras

时间:2024-02-15 16:34:25浏览次数:28  
标签:loss Algorithm sobel 像素 Hardware 边缘 edge 丢失 损耗率

论文《A New Hardware-Efficient Algorithm and Reconfigurable Architecture for Image
Contrast Enhancement》提到对对比度增强的图像进行客观评价,引用论文《Image Enhancement for Backlight-Scaled TFT-LCD Displays》中的边缘损耗率指标(The edge loss rate)。

原文:Contrast enhancement is not easily measured by quantitative criteria. To judge the preser,vation of image details quantitatively, a measure of the edge loss rates was adopted [13] for the test cases for the seven algorithms.

较低的边缘丢失率值指示对图像细节的更大保留。

1 The edge loss rate

为了对性能进行定量度量,我们设计了两个度量来衡量边缘保存的程度,一个使用Sobel算子,另一个是仅显著差异(just noticeable difference,JND)算法。

前者计算边缘损失率εE,其定义为遗漏边像素数ψEm与原始边缘像素数ψEi之间的比值

adopted for the test cases for the seven algorithms. The edge loss rate εE is defined as the ratio between the number of missed edge pixels ψ Em and the number of original edge pixels ψ Ei .

1.1 sobel算子

该指标计算边缘损失率\(A\),其定义为丢失像素数\(E_m\)与原始边缘像素数\(E_i\)之间的比值。边缘信息的提取用到了sobel算子,用横向纵向均可,\(sobel_x\)和\(sobel_y\)如下所示:

\[sobel_x= \begin{bmatrix} 1 & 0 & -1\\ 2 & 0 & -2\\ 1 & 0 & -1\\ \end{bmatrix} \]

\[sobel_y= \begin{bmatrix} 1 & 2 & 1\\ 0 & 0 & 0\\ -1 & -2 & -1\\ \end{bmatrix} \]

\[A=\frac{Em}{Ei} \]

其中,\(E_m\)表示丢失的边缘像素数量,\(E_i\)表示原始边缘像素数量。

如果一个像素是原始图像中的边缘像素而不是增强图像中的,则它被定义为丢失边缘像素

1.2 JND算法

第二个度量仅显著差异(just noticeable difference, JND)算法进行边缘像素分类,采用JND边缘像素分类算法来计算边缘丢失率\(B\)

\[B=\frac{Dm}{Di} \]

其中,\(D_m\)表示丢失的边缘像素,\(D_i\)表示原始边缘像素数目。


2 后记

看了文章还是不清楚第二个是怎么计算和定义丢失边缘像素,文章直接给出了图像处理前后,边缘像素丢失率的前后对比。

对于文章的指标用途是,文章算法在增强图像对比度的同时对图像细节信息不会降低太多。

我的个人博客主页,欢迎访问

我的CSDN主页,欢迎访问

我的GitHub主页,欢迎访问

我的知乎主页,欢迎访问

标签:loss,Algorithm,sobel,像素,Hardware,边缘,edge,丢失,损耗率
From: https://www.cnblogs.com/AomanHao/p/18016324

相关文章

  • 离散化(Discretization Algorithm)
    简介离散化——把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率,即:在不改变数据相对大小的条件下,对数据进行相应的缩小。离散化本质上可以看成是一种\(哈希\),其保证数据在哈希以后仍然保持原来的全/偏序关系。描述离散化用于处理一些个数不多,但是数......
  • 【阅读笔记】《A New Hardware-Efficient Algorithm and Reconfigurable Architecture
    一、对比度增强算法AGCWD硬件化实现2013年发表在TIP上的对比度增强算法AGCWD(Efficientcontrastenhancementusingadaptivegammacorrectionwithweightingdistribution)2014年发表在IEEETransactionsonImageProcessing的《ANewHardware-EfficientAlgorithmandReco......
  • 遗传算法(Genetic Algorithm)
    算法简介遗传算法(GeneticAlgorithm,GA)是一种基于自然选择和遗传操作的随机全局搜索优化算法。它通过模拟自然选择和遗传中发生的复制、交叉(crossover)和变异(mutation)等现象,从任一初始种群(父代)开始,通过随机选择、交叉和变异操作,产生更具有生存优势的子代,使群体不断向搜索空间最......
  • 补充:基于项目的协同过滤推荐算法(Item-Based Collaborative Filtering Recommendation
    前言继续上篇博客,继续读论文。想看上篇论文的同学可以点击这里相关工作Inthissectionwebrieflypresentsomeoftheresearchliteraturerelatedtocollaborativefiltering,recommendersystems,dataminingandpersonalization.在本节中,我们简要介绍了一些与协同......
  • 基于项目的协同过滤推荐算法(Item-Based Collaborative Filtering Recommendation Alg
    前言协同过滤推荐系统,包括基于用户的、基于项目的息肉通过率等,今天我们读一篇基于项目的协同过滤算法的论文。今天读的论文为一篇名叫《基于项目的协同过滤推荐算法》(Item-BasedCollaborativeFilteringRecommendationAlgorithms)。摘要Recommendersystemsapplyknowledg......
  • GYM102596L Yosupo's Algorithm【分治,支配对】
    给定平面上\(2n\)个点,每个点有坐标\((x_i,y_i)\),权值\(w_i\)及颜色\(c_i\)。所有点满足:若\(c_i=0\),则\(x_i<0\);若\(c_i=1\),则\(x_i>0\)。\(q\)次查询,每次给定\(L_i,R_i\),你需要选择两个点\(i,j\)满足如下条件:\(c_i=0,c_j=1\)。\(x_i<L,x_j>R\)或\(x_......
  • 神经网络优化篇:详解Adam 优化算法(Adam optimization algorithm)
    Adam优化算法在深度学习的历史上,包括许多知名研究者在内,提出了优化算法,并很好地解决了一些问题,但随后这些优化算法被指出并不能一般化,并不适用于多种神经网络,时间久了,深度学习圈子里的人开始多少有些质疑全新的优化算法,很多人都觉得动量(Momentum)梯度下降法很好用,很难再想出更好......
  • 基于标签值分布的强化学习推荐算法(Reinforcement Learning Recommendation Algorithm
    前言看论文的第三天,坚持下去。慢慢来,比较快。——唐迟本文基于2023年6月28日发表在MATHEMATICS上的一篇名为“基于标签值分布的强化学习推荐算法”(ReinforcementLearningRecommendationAlgorithmBasedonLabelValueDistribution)的文章。文章提出了一种基于标签分布......
  • JavaSE(13) - 常见算法 algorithm
    JavaSE(13)-常见算法algorithm查找算法Search基本查找BasicSearchpackagealgorithm.search;/*BasicSearch1.用基本查找,查找某个元素在数组中的索引(不考虑重复元素)2.用基本查找,查找某个元素在数组中的索引(考虑重复元素)*/publicclassBasicSearch{public......
  • 基于融合语义信息改进的内容推荐算法。Improved content recommendation algorithm in
    引言路漫漫其修远兮,吾将上下而求索。每天一篇论文,做更好的自己。本文读的这篇论文为发表于2023年5月28日的一篇名为《基于融合语义信息改进的内容推荐算法》(基于融合语义信息改进的内容推荐算法)的文章,文章主要介绍了基于内容的推荐技术在电子商务和教育领域的广泛应用,以及传统基......