首页 > 其他分享 >pd.Concat() and pd.merge()

pd.Concat() and pd.merge()

时间:2024-02-14 22:55:58浏览次数:34  
标签:result will merge objects Concat pd columns axis

The pd.concat() function in pandas is a powerful tool for concatenating or "stacking" together objects along a particular axis. This function can take a list or dictionary of Series, DataFrames, or Panel objects and join them either by rows (axis=0) or by columns (axis=1).

Here's the basic syntax of pd.concat():

pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)
  • objs: This is a list or dictionary of pandas objects to be concatenated. You can combine Series and DataFrame objects in various ways.
  • axis: The axis to concatenate along. axis=0 is the default and will stack the objects vertically (i.e., append rows). axis=1 will stack them horizontally (i.e., append columns).
  • join: This specifies how to handle indexes on other axes. join='outer' takes the union of all indexes (default), while join='inner' will take the intersection.
  • ignore_index: If True, the resulting axis will be labeled 0, 1, ..., n - 1. This is useful if you want to ignore the index of the objects being concatenated.
  • keys: If provided, this will create a hierarchical index on the concatenation axis. This can be useful for identifying data from different sources.
  • verify_integrity: If set to True, this will check for duplicates on the concatenation axis, raising an exception if there is a violation.
  • sort: By default (sort=False), the order of the columns in the resulting DataFrame follows the order of the columns in the objects being concatenated. If sort=True, the columns will be alphabetically sorted.
  • copy: If set to False, no copy of the data will be made if not necessary, potentially improving performance but possibly leading to unexpected results if the original data is modified after concatenation.

Here's an example using pd.concat():

import pandas as pd

# Create two DataFrames
df1 = pd.DataFrame({'A': ['A0', 'A1'], 'B': ['B0', 'B1']})
df2 = pd.DataFrame({'A': ['A2', 'A3'], 'B': ['B2', 'B3']})

# Concatenate DataFrames by rows
result = pd.concat([df1, df2])

# Concatenate DataFrames by columns
result_columns = pd.concat([df1, df2], axis=1)

print(result)
print(result_columns)

pd.concat() is especially useful when you have data in different DataFrame or Series objects but want to analyze it as one entity. It provides great flexibility in how the objects are combined together based on your specific requirements.

However, when concatenating multiple data frames, merge would be a better choice:
If you're looking to concatenate df1, df2, and df3 based on columns 'A' and 'B', you need to ensure that all three DataFrames have these columns. If they do, you can concatenate them side by side using pd.concat(). However, if you want to concatenate them by matching 'A' and 'B' across the DataFrames, you might be looking for a database-style join or merge operation rather than concatenation.

Here's how you would concatenate them side by side if all DataFrames have 'A' and 'B' columns:

import pandas as pd

# Assuming df1, df2, and df3 are already defined and have 'A' and 'B' columns
result = pd.concat([df1, df2, df3], axis=1)

This will result in a DataFrame with the 'A' and 'B' columns from each DataFrame placed next to each other.

If df2 and df3 have different values in columns 'A' and 'B' and you wish to align them, you'd typically use a merge operation:

result = pd.merge(df1, df2, on=['A', 'B'])
result = pd.merge(result, df3, on=['A', 'B'])

This will merge df1, df2, and df3 into a single DataFrame where the values in 'A' and 'B' match across the DataFrames. If

标签:result,will,merge,objects,Concat,pd,columns,axis
From: https://www.cnblogs.com/qtdwz/p/18015788

相关文章

  • docker 中安装apt-get install vim 失败,且apt-get update 报404
    在docker中安装vim时,安装失败。在更新apt-get时,报错如下:root@a8a94b78ebf0:/#apt-getupdateIgn:1http://deb.debian.org/debianstretchInReleaseIgn:2http://deb.debian.org/debianstretch-up......
  • Rust程序设计 第2版 电子书 pdf
    关注公众号:红宸笑。回复:电子书即可   本书是Rust领域经典参考书,由业内资深系统程序员编写,广受读者好评。书中全面介绍了Rust这种新型系统编程语言——具有无与伦比的安全性,兼具C和C++的高性能,并大大简化了并发程序的编写。第2版对上一版内容进行了重组和完善,新增了对......
  • Sample-Efficient Deep Reinforcement Learning via Episodic Backward Update
    发表时间:2019(NeurIPS2019)文章要点:这篇文章提出EpisodicBackwardUpdate(EBU)算法,采样一整条轨迹,然后从后往前依次更新做experiencereplay,这种方法对稀疏和延迟回报的环境有很好的效果(allowssparseanddelayedrewardstopropagatedirectlythroughalltransitionso......
  • dl-cdr-fai-pt-merge-08
    面向程序员的FastAI和PyTorch深度学习(九)原文:DeepLearningforCodersWithFastaiandPytorch译者:飞龙协议:CCBY-NC-SA4.0第十四章:ResNets在本章中,我们将在上一章介绍的CNN基础上构建,并向您解释ResNet(残差网络)架构。它是由KaimingHe等人于2015年在文章“Dee......
  • dl-cdr-fai-pt-merge-07
    面向程序员的FastAI和PyTorch深度学习(八)原文:DeepLearningforCodersWithFastaiandPytorch译者:飞龙协议:CCBY-NC-SA4.0第三部分:深度学习的基础。第十二章:从头开始的语言模型我们现在准备深入…深入深度学习!您已经学会了如何训练基本的神经网络,但是如何从那里创......
  • dl-cdr-fai-pt-merge-06
    面向程序员的FastAI和PyTorch深度学习(七)原文:DeepLearningforCodersWithFastaiandPytorch译者:飞龙协议:CCBY-NC-SA4.0第十章:NLP深入探讨:RNNs在第一章中,我们看到深度学习可以用于处理自然语言数据集并取得出色的结果。我们的示例依赖于使用预训练的语言模型,并对......
  • dl-cdr-fai-pt-merge-05
    面向程序员的FastAI和PyTorch深度学习(六)原文:DeepLearningforCodersWithFastaiandPytorch译者:飞龙协议:CCBY-NC-SA4.0第九章:表格建模深入探讨表格建模将数据以表格形式(如电子表格或CSV文件)呈现。目标是基于其他列中的值来预测一列中的值。在本章中,我们将不仅......
  • dl-cdr-fai-pt-merge-04
    面向程序员的FastAI和PyTorch深度学习(五)原文:DeepLearningforCodersWithFastaiandPytorch译者:飞龙协议:CCBY-NC-SA4.0第七章:训练一个最先进的模型本章介绍了更高级的技术,用于训练图像分类模型并获得最先进的结果。如果您想了解更多关于深度学习的其他应用,并稍后......
  • dl-cdr-fai-pt-merge-03
    面向程序员的FastAI和PyTorch深度学习(四)原文:DeepLearningforCodersWithFastaiandPytorch译者:飞龙协议:CCBY-NC-SA4.0第五章:图像分类现在您了解了深度学习是什么、它的用途以及如何创建和部署模型,现在是时候深入了!在理想的世界中,深度学习从业者不必了解每个细节......
  • dl-cdr-fai-pt-merge-02
    面向程序员的FastAI和PyTorch深度学习(三)原文:DeepLearningforCodersWithFastaiandPytorch译者:飞龙协议:CCBY-NC-SA4.0第二部分:理解fastai的应用第四章:底层:训练数字分类器在第二章中看到训练各种模型的样子后,现在让我们深入了解并看看究竟发生了什么。我们将......