模型微调是指在一个已经训练好的模型的基础上,针对特定任务或者特定数据集进行再次训练以提高性能的过程。微调可以在使其适应特定任务时产生显着的结果。
RoBERTa(Robustly optimized BERT approach)是由Facebook AI提出的一种基于Transformer架构的预训练语言模型。它是对Google提出的BERT(Bidirectional Encoder Representations from Transformers)模型的改进和优化。
"Low-Rank Adaptation"(低秩自适应)是一种用于模型微调或迁移学习的技术。一般来说我们只是使用LORA来微调大语言模型,但是其实只要是使用了Transformers块的模型,LORA都可以进行微调,本文将介绍如何利用
标签:RoBERTa,训练,模型,微调,特定,LORA From: https://www.cnblogs.com/deephub/p/18014465