前置知识
解法
欧拉反演,简单地推下式子即可。
\(\begin{aligned}\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \gcd(i,j)^{2} &=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d=1}^{n}d^{2} [\gcd(i,j)=d] \\ &=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d=1}^{n}d^{2} [\gcd(\dfrac{i}{d},\dfrac{j}{d})=1] \\ &=\sum\limits_{d=1}^{n}d^{2} \sum\limits_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum\limits_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor} [\gcd(i,j)=1] \\ &=\sum\limits_{d=1}^{n}d^{2} (-1+2 \sum\limits_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor} \varphi(i)) \end{aligned}\)
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define sort stable_sort
#define endl '\n'
ll phi[10000001],prime[10000001],sum[10000001],len=0;
bool vis[10000001];
void euler(ll n)
{
memset(vis,0,sizeof(vis));
phi[1]=1;
for(ll i=2;i<=n;i++)
{
if(vis[i]==false)
{
len++;
prime[len]=i;
phi[i]=i-1;
}
for(ll j=1;j<=len&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
}
int main()
{
ll n,ans=0,i,p=1000000007;
cin>>n;
euler(n);
for(i=1;i<=n;i++)
{
sum[i]=sum[i-1]+phi[i];
}
for(i=1;i<=n;i++)
{
ans=(ans+(i*i%p)*((2*sum[n/i]%p-1+p)%p)%p)%p;
}
cout<<ans<<endl;
return 0;
}
后记
多倍经验:P2398
标签:P8670,gcd,limits,题解,sum,10000001,long,蓝桥,define From: https://www.cnblogs.com/The-Shadow-Dragon/p/18013039