首页 > 其他分享 >今日总结

今日总结

时间:2024-02-08 23:23:12浏览次数:28  
标签:总结 SparkContext Task YARN Application 今日 Spark 运行

Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架,最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势:

  • Spark提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求
  • 官方资料介绍Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍,甚至能够将应用在磁盘上的运行速度提升10倍

目标:

  • 架构及生态
  • spark 与 hadoop
  • 运行流程及特点
  • 常用术语
  • standalone模式
  • yarn集群
  • RDD运行流程

架构及生态:

  • 通常当需要处理的数据量超过了单机尺度(比如我们的计算机有4GB的内存,而我们需要处理100GB以上的数据)这时我们可以选择spark集群进行计算,有时我们可能需要处理的数据量并不大,但是计算很复杂,需要大量的时间,这时我们也可以选择利用spark集群强大的计算资源,并行化地计算,其架构示意图如下:
  • Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
  • Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
  • Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据
  • MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
  • GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作
  • Spark架构的组成图如下:
  • Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器
  • Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
  • Driver: 运行Application 的main()函数
  • Executor:执行器,是为某个Application运行在worker node上的一个进程

Spark与hadoop:

  • Hadoop有两个核心模块,分布式存储模块HDFS和分布式计算模块Mapreduce
  • spark本身并没有提供分布式文件系统,因此spark的分析大多依赖于Hadoop的分布式文件系统HDFS
  • Hadoop的Mapreduce与spark都可以进行数据计算,而相比于Mapreduce,spark的速度更快并且提供的功能更加丰富
  • 关系图如下:

运行流程及特点:

  1. 构建Spark Application的运行环境,启动SparkContext
  2. SparkContext向资源管理器(可以是Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend,
  3. Executor向SparkContext申请Task
  4. SparkContext将应用程序分发给Executor
  5. SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,最后由Task Scheduler将Task发送给Executor运行
  6. Task在Executor上运行,运行完释放所有资源

Spark运行特点:

  1. 每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统
  2. Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了
  3. 提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换
  4. Task采用了数据本地性和推测执行的优化机制

常用术语:

  • Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码
  • Driver: Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver
  • Executor: 某个Application运行在worker节点上的一个进程, 该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个数
  • Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型
  1. Standalon : spark原生的资源管理,由Master负责资源的分配
  2. Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架
  3. Hadoop Yarn: 主要是指Yarn中的ResourceManager
  • Worker: 集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点
  • Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
  • Job: 包含多个Task组成的并行计算,往往由Spark Action触发生成, 一个Application中往往会产生多个Job
  • Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非最终的Stage(Shuffle Map Stage)和最终的Stage(Result Stage)两种,Stage的边界就是发生shuffle的地方
  • DAGScheduler: 根据Job构建基于Stage的DAG(Directed Acyclic Graph有向无环图),并提交Stage给TASkScheduler。 其划分Stage的依据是RDD之间的依赖的关系找出开销最小的调度方法,如下图

TASKSedulter: 将TaskSET提交给worker运行,每个Executor运行什么Task就是在此处分配的. TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。另外TaskScheduler还维护着所有Task的运行标签,重试失败的Task。下图展示了TaskScheduler的作用

  • 在不同运行模式中任务调度器具体为:
  1. Spark on Standalone模式为TaskScheduler
  2. YARN-Client模式为YarnClientClusterScheduler
  3. YARN-Cluster模式为YarnClusterScheduler
  • 将这些术语串起来的运行层次图如下:
  • Job=多个stage,Stage=多个同种task, Task分为ShuffleMapTask和ResultTask,Dependency分为ShuffleDependency和NarrowDependency

Spark运行模式:

  • Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。
  • 对于外部资源调度框架的支持,目前的实现包括相对稳定的Mesos模式,以及hadoop YARN模式
  • 本地模式:常用于本地开发测试,本地还分别 local 和 local cluster

standalone: 独立集群运行模式

  • Standalone模式使用Spark自带的资源调度框架
  • 采用Master/Slaves的典型架构,选用ZooKeeper来实现Master的HA
  • 框架结构图如下:
  • 该模式主要的节点有Client节点、Master节点和Worker节点。其中Driver既可以运行在Master节点上中,也可以运行在本地Client端。当用spark-shell交互式工具提交Spark的Job时,Driver在Master节点上运行;当使用spark-submit工具提交Job或者在Eclips、IDEA等开发平台上使用”new SparkConf.setManager(“spark://master:7077”)”方式运行Spark任务时,Driver是运行在本地Client端上的
  • 运行过程如下图:(参考至:http://blog.csdn.net/gamer_gyt/article/details/51833681
  1. SparkContext连接到Master,向Master注册并申请资源(CPU Core 和Memory)
  2. Master根据SparkContext的资源申请要求和Worker心跳周期内报告的信息决定在哪个Worker上分配资源,然后在该Worker上获取资源,然后启动StandaloneExecutorBackend;
  3. StandaloneExecutorBackend向SparkContext注册;
  4. SparkContext将Applicaiton代码发送给StandaloneExecutorBackend;并且SparkContext解析Applicaiton代码,构建DAG图,并提交给DAG Scheduler分解成Stage(当碰到Action操作时,就会催生Job;每个Job中含有1个或多个Stage,Stage一般在获取外部数据和shuffle之前产生),然后以Stage(或者称为TaskSet)提交给Task Scheduler,Task Scheduler负责将Task分配到相应的Worker,最后提交给StandaloneExecutorBackend执行;
  5. StandaloneExecutorBackend会建立Executor线程池,开始执行Task,并向SparkContext报告,直至Task完成
  6. 所有Task完成后,SparkContext向Master注销,释放资源

yarn: (参考:http://blog.csdn.net/gamer_gyt/article/details/51833681

  • Spark on YARN模式根据Driver在集群中的位置分为两种模式:一种是YARN-Client模式,另一种是YARN-Cluster(或称为YARN-Standalone模式)
  • Yarn-Client模式中,Driver在客户端本地运行,这种模式可以使得Spark Application和客户端进行交互,因为Driver在客户端,所以可以通过webUI访问Driver的状态,默认是http://hadoop1:4040访问,而YARN通过http:// hadoop1:8088访问
  • YARN-client的工作流程步骤为:
  • Spark Yarn Client向YARN的ResourceManager申请启动Application Master。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派
  • Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container)
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task
  • client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务
  • 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己

Spark Cluster模式:

  • 在YARN-Cluster模式中,当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:
  1. 第一个阶段是把Spark的Driver作为一个ApplicationMaster在YARN集群中先启动;
  2. 第二个阶段是由ApplicationMaster创建应用程序,然后为它向ResourceManager申请资源,并启动Executor来运行Task,同时监控它的整个运行过程,直到运行完成
  • YARN-cluster的工作流程分为以下几个步骤
  • Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化
  • ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等
  • ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务
  • 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己

Spark Client 和 Spark Cluster的区别:

  • 理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别
  • YARN-Cluster模式下,Driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行,因而YARN-Cluster模式不适合运行交互类型的作业
  • YARN-Client模式下,Application Master仅仅向YARN请求Executor,Client会和请求的Container通信来调度他们工作,也就是说Client不能离开

思考: 我们在使用Spark提交job时使用的哪种模式?

RDD运行流程:RDD在Spark中运行大概分为以下三步:

    1. 创建RDD对象
    2. DAGScheduler模块介入运算,计算RDD之间的依赖关系,RDD之间的依赖关系就形成了DAG
    3. 每一个Job被分为多个Stage。划分Stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个Stage,避免多个Stage之间的消息传递开销
  • 示例图如下:

以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的

  • 创建 RDD 上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 )?
  • 创建执行计划 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划
  • 调度任务 将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续

标签:总结,SparkContext,Task,YARN,Application,今日,Spark,运行
From: https://www.cnblogs.com/zhaoyueheng/p/18012238

相关文章

  • Codeforces Round 923 (Div. 3)赛后总结
    CodeforcesRound923(Div.3)A没什么好说的,纯秒。B一开始不知道怎么做,后面用了一个比较麻烦复杂的思路,可以做,但是开数时漏了数组0下标,导致样例一部分一直是空的。C非常简单的一道题,判断条件也比较好找,但是再提醒一遍自己,数组开大点,应该数组开小了,导致样例8没过真的气,最后......
  • 2023年度总结
    生活2023是花钱最多的一年,今年女儿出生,房子购买,在帝都换了一个新房租,哪里都是钱,靠着微薄的工资就这样坚挺了下来,同样也是辛苦且满足的一年,每个人都很累,抱一抱自己工作2023是进入新公司的一年,整整一年的时光,最后年终的时候有一个很好的结局,还是要感谢公司,感谢自己,感谢工作,不然自......
  • 我的2023年总结
    2023年已经过去一个多月了,我已经不会再将日期错写为“2023xxxx”。同样,2023年的记忆也在随着时间一点一点模糊。临近春节,今天工作日无心再工作,于是想借这个时间对2023年做个小小的总结,同时给以2024年一些希望。2023年,再见1、2023年,家人一切安好。虽然经历了多次全家发烧咳嗽的......
  • 每日总结
    变量是一种使用方便的占位符,用于引用计算机内存地址,变量创建后会占用一定的内存空间。基于变量的数据类型,操作系统会进行内存分配并且决定什么将被储存在保留内存中。因此,通过给变量分配不同的数据类型,你可以在这些变量中存储整数,小数或者字母。变量声明在学习如何声明变量与常......
  • 【调试】pstore原理和使用方法总结
    什么是pstorepstore最初是用于系统发生oops或panic时,自动保存内核logbuffer中的日志。不过在当前内核版本中,其已经支持了更多的功能,如保存console日志、ftrace消息和用户空间日志。同时,它还支持将这些消息保存在不同的存储设备中,如内存、块设备或mtd设备。为了提高灵活性和可扩......
  • 【驾驶知识】科目一、科目四知识点总结大全!!!
    前言:驾考宝典知识点整理、科目一总结、科目四总结、驾照科知识点总结。科目一和科目四的主要知识点,自己在准备时整理的笔记,仅供参考,希望大家都能顺利通关~原文持续更新中:https://www.cnblogs.com/MrFlySand/p/18010913戳下方链接,后台回复【230813驾照】获取更多驾考知识http......
  • JUnit 5 注解总结与解析
    前言大家好,我是chowley,通过前篇的JUnit实践,我对这个框架产生了好奇,除了断言判断,它还有哪些用处呢?下面来总结一下它的常见注解及作用。正文在Java单元测试中,JUnit是一种常用的测试框架,它提供了丰富的注解用于标识测试方法、设置测试环境以及控制测试执行流程。除了用于断言判断之......
  • 学期总结
    看到@Lyw_Cyq_01同志写了个年终总结,心血来潮写了个学期总结Part0考试:语文90分rk11符合我对自己的预期数学99分rk1居然没满分?我无语。。。英语99分rk2居然没满分?我无语。。。科学90分rk2掉大分!!!!,预咕96,吾蜜汁自信不是这分数rk2???总分378分班排rk2段排......
  • 22个Python绘图包,极简总结!
    你好,我是zhenguo今天这篇文章不是项目,我的第十个项目还在整理中。今天我参考github,总结出一个极简但却包括了几乎所有Python的绘图包。一共22个Python绘图包:Python绘图包altair-基于VegaLite的声明性统计可视化bokeh-用于Python的交互式Web绘图Chartify-Bokeh包装,使......
  • 今日总结
      这意味着运行Spark就需要新建一个笔记本。   加载数据 下一步是上传用于学习Spark的一些数据。只需点击主页选项卡上的“导入并查看数据”。 本文末尾会使用多个数据集来说明,但现在先从一些非常简单的东西开始。 添加shakespeare.txt文件,下载传送门:https:......