首页 > 其他分享 >[Performance] Memory pool

[Performance] Memory pool

时间:2024-02-05 16:13:14浏览次数:29  
标签:particle Memory new memory pools Performance pool size

A memory pool, also known as a memory buffer pool, is a method used in software development for managing memory allocation. Instead of allocating and deallocating memory individually for each new object at runtime, which can be costly in terms of performance and can lead to fragmentation of the memory space, memory pools allocate memory in large blocks. These blocks are then used to satisfy smaller allocation requests from the program.

The main purposes and advantages of using memory pools include:

  1. Performance Improvement: By allocating memory in bulk, memory pools reduce the overhead associated with frequent system calls for memory allocation and deallocation. This can significantly improve performance for applications that create and destroy many small objects dynamically.

  2. Reduced Fragmentation: Allocating memory in consistent block sizes helps to minimize fragmentation within the heap. Fragmentation can lead to inefficient use of memory and can potentially cause a program to run out of memory prematurely.

  3. Predictable Memory Usage: Memory pools can provide more predictable memory usage patterns, as the size and number of allocations are managed and can be optimized according to the needs of the application.

  4. Simplified Memory Management: For some applications, especially those with known allocation patterns, memory pools simplify memory management by reducing the complexity of tracking individual allocations.

  5. Real-time Applications: Memory pools are particularly useful in real-time computing where allocation time needs to be predictable and minimal. By avoiding the unpredictable latency of dynamic memory allocation, memory pools help in meeting real-time deadlines.

Memory pools are widely used in various programming scenarios, especially in embedded systems, real-time systems, high-performance computing, and applications where memory allocation performance is critical. The implementation details and the effectiveness of memory pools can vary significantly depending on the specific requirements of the application, including the size and frequency of memory allocations.

 

Example:

class Particle {
  constructor() {
    this.x = 0;
    this.y = 0;
    this.velocityX = 0;
    this.velocityY = 0;
    this.alive = false; // Indicates whether the particle is in use
  }

  initialize(x, y, velocityX, velocityY) {
    this.x = x;
    this.y = y;
    this.velocityX = velocityX;
    this.velocityY = velocityY;
    this.alive = true;
  }

  update() {
    if (!this.alive) return;

    // Update particle position
    this.x += this.velocityX;
    this.y += this.velocityY;

    // Example condition to simulate particle life end
    if (this.x > 100 || this.y > 100) {
      this.alive = false;
    }
  }
}

class ParticlePool {
  constructor(size) {
    this.pool = [];
    this.size = size;
    this.lastUsedIndex = 0;

    for (let i = 0; i < size; i++) {
      this.pool.push(new Particle());
    }
  }

  getParticle() {
    for (let i = 0; i < this.size; i++) {
      const index = (this.lastUsedIndex + i) % this.size;
      if (!this.pool[index].alive) {
        this.lastUsedIndex = index;
        return this.pool[index];
      }
    }

    // No available particle, increase pool size
    return this.expandPool();
  }

  expandPool() {
    // Define by how much the pool should increase when it's full. This could be a fixed number or a percentage of the current size.
    const expansionSize = this.size * 0.2; // For example, increase by 20% of the current size
    for (let i = 0; i < expansionSize; i++) {
      this.pool.push(new Particle());
    }
    this.size += expansionSize;
    this.lastUsedIndex = this.size - expansionSize; // Start using the new particles
    return this.pool[this.lastUsedIndex];
  }
}

// Usage example
const PARTICLE_POOL_SIZE = 100;
const particlePool = new ParticlePool(PARTICLE_POOL_SIZE);

// Simulate creating particles
for (let i = 0; i < 10; i++) {
  const particle = particlePool.getParticle();
  if (particle) {
    particle.initialize(Math.random() * 50, Math.random() * 50, 1, 1);
  }
}

// Simulate updating particles
setInterval(() => {
  particlePool.pool.forEach(particle => particle.update());
}, 100);

In this example:

  • The Particle class represents individual particles, with properties for position, velocity, and an alive flag to indicate whether the particle is currently in use.
  • The ParticlePool class manages a fixed number of Particle instances. It provides a method getParticle to retrieve an available particle from the pool, reinitializing it for reuse instead of allocating a new object.
  • The usage example simulates creating and updating particles. When a particle is needed, it is retrieved from the pool, initialized with new properties, and later automatically "recycled" when it is no longer active.

This approach avoids the overhead associated with frequent creation and destruction of particle objects, especially in high-performance or real-time applications like games or simulations.

 

标签:particle,Memory,new,memory,pools,Performance,pool,size
From: https://www.cnblogs.com/Answer1215/p/18008330

相关文章

  • SpringBoot中使用Spring自带线程池ThreadPoolTaskExecutor与Java8CompletableFuture实
    场景关于线程池的使用:Java中ExecutorService线程池的使用(Runnable和Callable多线程实现):https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/126242904Java中创建线程的方式以及线程池创建的方式、推荐使用ThreadPoolExecutor以及示例:https://blog.csdn.net/BADAO_......
  • WebAssembly核心编程[4]: Memory
    由于Memory存储的是单纯的二进制字节,所以原则上我们可以用来它作为媒介,在wasm模块和数组程序之间传递任何类型的数据。在JavaScriptAPI中,Memory通过WebAssembly.Memory类型表示,我们一般将它内部的缓冲区映射相应类型的数组进行处理。WebAssembly也提供了相应的指令来提供针对Memo......
  • [java] Tomcat 启动失败 Error: error while reading constant pool for .class: unex
    表现公司服务器今天启动tomcat失败,看catalina.out文件里面报错java.lang.ClassFormatError:Unknownconstanttag101inclassfilecn/world/data尝试解决查了一下,网上一般认为是字符串的问题,但是代码文件目标行是英文字符串,只是简单的println了字符串,应该不会有问题。尤......
  • Memory protection key in Linux
    MemoryProtectionKeysReference:MPKinLinuxkerneldocumentMemoryProtectionKeysforUserspace(PKUakaPKEYs)isafeaturewhichisfoundonIntel’sSkylake“ScalableProcessor”ServerCPUs.Itwillbeavalableinfuturenon-serverparts.Foranyone......
  • WIP: SLM-DB:Single-Level Key-Value Store with Persistent Memory
    论文原文:https://www.usenix.org/system/files/fast19-kaiyrakhmet.pdf摘要:本文调查了如何利用新出现的可按照字节寻址的持久化内存(PersistentMemory)来增强KV存储的性能。我们充分利用PM,提出了一种新型的KV存储,SLM-DB,这种存储同时利用到了B+树索引和LSM-tree的优点。我们提出......
  • CMU 15-445(Fall 2023) Project1 BUFFER POOL个人笔记
    PROJECT#1-BUFFERPOOL总结本文章不涉及实验要求实现的方法的具体代码,且只包括基础部分的内容。Project1只做了基础部分,没有做针对排行榜的优化。Project1基础部分不算难,但Bustub中只提供了简单的测试样例,通过了本地的测试后提交到gradescope可能拿不了满分,需要根据gradesco......
  • SpringBoot利用ThreadPoolTaskExecutor批量插入百万级数据实测!
    开发目的: 提高百万级数据插入效率。采取方案: 利用ThreadPoolTaskExecutor多线程批量插入。采用技术: springboot2.1.1+mybatisPlus3.0.6+swagger2.5.0+Lombok1.18.4+postgresql+ThreadPoolTaskExecutor等。application-dev.properties添加线程池配置信息#异步线程配置#配置核......
  • Mygin上下文之sync.Pool复用
    本篇是mygin的第七篇,参照gin框架,感兴趣的可以从Mygin第一篇开始看,Mygin从零开始完全手写,在实现的同时,带你一窥gin框架的核心原理实现。目的sync.Pool的作用介绍mygin中使用sync.Poolsync.Pool的作用先看看官方文档怎样说的吧,我截取了官方文档的第一句。//APoolisa......
  • Mysql中存储引擎InnoDB,MyISAM,MEMORY比较
    Mysql中存储引擎InnoDB,MyISAM,MEMORY比较showENGINES--查看数据库支持的搜索引擎ENGINE=InnoDB--使用的InnoDB引擎CREATETABLE`user1`(`id`bigint(20)NOTNULLDEFAULT'0',`name`varchar(255)DEFAULTNULL,`age`int(11)DEFAULTNULL,`sex`varchar(255)......
  • Java字符串池(String Pool)深度解析
    在工作中,String类是我们使用频率非常高的一种对象类型。JVM为了提升性能和减少内存开销,避免字符串的重复创建,其维护了一块特殊的内存空间,这就是我们今天要讨论的核心,即字符串池(StringPool)。字符串池由String类私有的维护。   我们知道,在Java中有两种创建字符串对象的方式:1......