首页 > 其他分享 >CF620E New Year Tree 题解

CF620E New Year Tree 题解

时间:2024-02-02 13:33:53浏览次数:33  
标签:const CF620E 题解 int template New curr include define

题目链接:CF 或者 洛谷

这题很简单,看到颜色数,HH的项链?树,树上的HH的项链?带修,树上的镜中的昆虫?\(c_i \le 60\),噢,easy 了。

考虑一类信息,表示有和无,对于某种颜色来讲,\(0/1\) 表示无或者有,而或运算让我们从小区间的有无情况反映到大区间的有无情况。一种暴力的想法,为每种颜色建立一棵有无颜色的线段树,每次依次查询这 \(60\) 棵线段树对应区间内的该颜色的有无情况,\(60\times t\log{n}\) 看上去可行,不过我们有一种更简单的方式反应一堆量的有无,显然是:\(状态压缩\),观察到颜色不超过 \(60\) 种,我们每个维护一个 \(64\ 位的\ val\) 即可。观察到有覆盖操作,那么再加一个覆盖懒标记就好了。由于跟子树有关,那就别考虑树剖了,直接 \(dfs\) 序简简单单的,每次我们可以用 \(1<<(val-1)\) 表示 \(val\) 表示这种颜色是有的。线段树维护状态压缩即可。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

// #define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char))return;
    if (x < 0)x = -x, putchar('-');
    if (x > 9)write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow)return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3() { one = tow = three = 0; }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y)x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y)x = y;
}

constexpr int N = 4e5 + 10;

struct Node
{
    ll val, cover;
} node[N << 2];

#define val(x) node[x].val
#define cover(x) node[x].cover

inline void push_up(const int curr)
{
    val(curr) = val(ls(curr)) | val(rs(curr));
}

inline void push_down(const int curr)
{
    if (cover(curr))
    {
        val(ls(curr)) = val(rs(curr)) = cover(ls(curr)) = cover(rs(curr)) = cover(curr);
        cover(curr) = 0;
    }
}

int n, q;

inline void Cover(const int curr, const int l, const int r, const ll val, const int s = 1, const int e = n)
{
    const int mid = s + e >> 1;
    if (l <= s and e <= r)
    {
        val(curr) = cover(curr) = val;
        return;
    }
    push_down(curr);
    if (l <= mid)Cover(ls(curr), l, r, val, s, mid);
    if (r > mid)Cover(rs(curr), l, r, val, mid + 1, e);
    push_up(curr);
}

inline ll Query(const int curr, const int l, const int r, const int s = 1, const int e = n)
{
    if (l <= s and e <= r)return val(curr);
    push_down(curr);
    const int mid = s + e >> 1;
    ll ans = 0;
    if (l <= mid)ans |= Query(ls(curr), l, r, s, mid);
    if (r > mid)ans |= Query(rs(curr), l, r, mid + 1, e);
    return ans;
}

int cnt, s[N], e[N];
vector<int> child[N];
int a[N];
int rnk[N];
inline void dfs(const int curr, const int fa)
{
    s[curr] = ++cnt;
    rnk[cnt]=curr;
    for (const auto nxt : child[curr])if (nxt != fa)dfs(nxt, curr);
    e[curr] = cnt;
}

inline void build(const int curr = 1, const int l = 1, const int r = n)
{
    const int mid = l + r >> 1;
    if (l == r)
    {
        val(curr) = 1LL << a[rnk[l]];
        return;
    }
    build(ls(curr), l, mid);
    build(rs(curr), mid + 1, r);
    push_up(curr);
}

inline void solve()
{
    cin >> n >> q;
    forn(i, 1, n)cin >> a[i], a[i]--;
    forn(i, 1, n-1)
    {
        int u, v;
        cin >> u >> v;
        child[u].push_back(v), child[v].push_back(u);
    }
    dfs(1, 0);
    build();
    while (q--)
    {
        int op;
        cin >> op;
        if (op == 1)
        {
            int u, val;
            cin >> u >> val;
            Cover(1, s[u], e[u], 1LL << --val);
        }
        else
        {
            int u;
            cin >> u;
            ll ans = Query(1, s[u], e[u]);
            cout << __popcount(ans) << endl;
        }
    }
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test)solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

\[时间复杂度忽略掉\ popcount\ 的复杂度:O(t\log{n}) \]

标签:const,CF620E,题解,int,template,New,curr,include,define
From: https://www.cnblogs.com/Athanasy/p/18003028

相关文章

  • CF125D 题解
    思路首先可以发现前三个数中的两个数一定为一个等差数列中,所以我们对于前三个数枚举哪两个数是一个等差数列中的,设这两个数的差为\(w\),在原数列中找到一个最长的公差为\(w\)的等差数列,记为\(A\),剩下的数记为\(B\),此时有三种可能。\(|B|=0\),此时可以知道原数组就是等差数列......
  • mozhe靶场: WebShell文件上传漏洞分析溯源(第5题) 题解(使用哥斯拉)
    哥斯拉由java编写,可以在linux上使用.个人认为比冰蝎好用,用冰蝎连不上这个靶场,但是哥斯拉可以连的上.github搜哥斯拉就能下载首先登陆后台,弱口令adminadmin点击添加文章,尝试上传一句话木马(一句话木马可以点击哥斯拉的生成)webshell.asp<%evalrequest("pass")%>......
  • P3356 火星探测题解
    part1费用流建图比较显然,把车的数量当成流量,把捡到的石头数量当成费用。然后跑最大费用最大流。因为费用是针对点而不是边,所以要拆点,每个点分为入点和出点。对于向下走,向右走建边:从起点的出点向终点的入点连边,容量为\(inf\),费用为\(0\)。对于每一个格子,如果当前格子是石头......
  • AT_abc243_g [ABC243G] Sqrt 题解
    可设\(f_i\)为以\(i\)开头的方案数,由于最后由于操作数很多所以不用考虑还剩多少次操作,显然可得状态转移方程\(f_i=\sum\limits_{j=1}^{\sqrti}f_j\),时间复杂度\(O(T+X\sqrtX)\),空间复杂度\(O(X)\),无法接受。考虑如何更优,可以发现在\(T\)次询问中,每次可以直接转移,因此......
  • UVA12032 题解
    题意原题面一堆废话,其实这道题很简单。\(T\)组数据,每组数据给定你一个长度为\(n\)的序列\(a_1...a_n\),在定义\(a_0\)为\(0\)的情况下,假设\(k\)为你的力量系数,在\(\foralli\inn\)时\(a_i-a_{i-1}\lek\),且在按顺序\(1-n\)进行判断时,如果\(a_i-a_{i-1}=k\)......
  • 一般图最小匹配 题解
    首先进行排序,显然只有排序后相邻两个元素匹配才有可能成为答案。我们设\(b_i=a_i-a_{i-1}\),则问题转化为:在\(b\)数组中选\(m\)个数(显然一个\(b\)),两两不能相邻,求这些数和最小值。就和这道题一模一样了,使用反悔贪心。具体的,我们可以将所有\(b_i\)放进小根堆里,每次取出......
  • PMP-6.8 控制资源--问题解决
    一、控制资源基础内容 0.涉及领域:资源管理计划资源管理计划为如何使用、控制和最终释放实物资源提供指南。1.控制资源阶段需参照文档(1)问题日志问题日志用于识别有关缺乏资源、原材料供应延迟,或低等级原材料等问题。(2)经验教训登记册在项目早期获得的经验教训可......
  • CF1753D 题解
    因为最后要找的是“腾出空位”的最小代价。所以不妨把“障碍的移动”转化为“空位的移动”。令\(f_{x,y}\)为:使得\((x,y)\)为空,至少需要多少代价。下面来找转移方程,显然转移方程与空格子移动有关。所以观察空格子移动的规律。若当前格子\((x,y)\)为L。以\((x,y+1)\)......
  • [转帖]Open JDK 8.0_152-b16 崩溃 : [libzip.so+0x12522] newEntry+0x62
    一.问题描述在执行spark任务的时候,JVM崩溃.崩溃dump日志:##AfatalerrorhasbeendetectedbytheJavaRuntimeEnvironment:##SIGBUS(0x7)atpc=0x00007f9adacb9522,pid=107874,tid=0x00007f9add417700##JREversion:Java(TM)SERuntimeEnvironme......
  • P7031 [NWRRC2016] Anniversary Cake 题解
    作者还在想,居然没什么人写红题题解???咳咳。言归正传。本题没有想象中的那么复杂,咱分类讨论就行了。·若在属于蛋糕的平面直角坐标系中,两支蜡烛的横、纵轴不同,就会有多种切法。如图:           这样,我们随便找一种情况输出就行,反正有SpecialJudge......