一、实验目的
能够理解 POX 控制器的工作原理;
通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;
能够运用 POX控制器编写自定义网络应用程序,进一步熟悉POX控制器流表下发的方法。
二、实验环境
Ubuntu 20.04 Desktop amd64
三、实验要求
(一)基本要求
1.搭建下图所示SDN拓扑,协议使用Open Flow 1.0,控制器使用部署于本地的POX(默认监听6633端口)
- 构建拓扑
sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10
2.阅读Hub模块代码,使用 tcpdump 验证Hub模块;
- POX: ./pox.py log.level --DEBUG forwarding.hub
- 主机终端mininet> xterm h2 h3
- 在h2主机终端中输入tcpdump -nn -i h2-eth0
- 在h3主机终端中输入tcpdump -nn -i h3-eth0
h1 ping h2
h2,h3都可以接收到数据包
h1 ping h3
h2,h3都可以接收到数据包
3.阅读L2_learning模块代码,画出程序流程图,使用 tcpdump 验证Switch模块。
- POX: ./pox.py log.level --DEBUG forwarding.l2_learning
- 主机终端mininet> xterm h2 h3
- 在h2主机终端中输入tcpdump -nn -i h2-eth0
- 在h3主机终端中输入tcpdump -nn -i h3-eth0
h1 ping h2
h2收到数据包,h3没有收到数据包
h1 ping h3
h3收到数据包,h2没有收到数据包
验证了Switch模块的功能:让OpenFlow交换机实现L2自学习。所以只有目的主机可以接收到数据包。
(二)进阶要求
1. 重新搭建(一)的拓扑,此时交换机内无流表规则,拓扑内主机互不相通;编写Python程序自定义一个POX模块SendFlowInSingle3,并且将拓扑连接至SendFlowInSingle3(默认端口6633),实现向s1发送流表规则使得所有主机两两互通。
from pox.core import core
import pox.openflow.libopenflow_01 as of
class SendFlowInSingle3(object):
def __init__(self):
core.openflow.addListeners(self)
def _handle_ConnectionUp(self, event):
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 1
msg.actions.append(of.ofp_action_output(port=2))
msg.actions.append(of.ofp_action_output(port=3))
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 2
msg.actions.append(of.ofp_action_output(port=1))
msg.actions.append(of.ofp_action_output(port=3))
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 3
msg.actions.append(of.ofp_action_output(port=1))
msg.actions.append(of.ofp_action_output(port=2))
event.connection.send(msg)
def launch():
core.registerNew(SendFlowInSingle3)
ovs-ofctl查看交换机流表项
2. 基于进阶1的代码,完成ODL实验的硬超时功能。
from pox.core import core
import pox.openflow.libopenflow_01 as of
class SendPoxHardTimeOut(object):
def __init__(self):
core.openflow.addListeners(self)
def _handle_ConnectionUp(self, event):
msg = of.ofp_flow_mod()
msg.priority = 2
msg.match.in_port = 1
msg.hard_timeout = 10
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 1
msg.actions.append(of.ofp_action_output(port=2))
msg.actions.append(of.ofp_action_output(port=3))
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 2
msg.match.in_port = 2
msg.hard_timeout = 10
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 2
msg.actions.append(of.ofp_action_output(port=1))
msg.actions.append(of.ofp_action_output(port=3))
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 2
msg.match.in_port = 3
msg.hard_timeout = 10
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 3
msg.actions.append(of.ofp_action_output(port=1))
msg.actions.append(of.ofp_action_output(port=2))
event.connection.send(msg)
def launch():
core.registerNew(SendPoxHardTimeOut)
ovs-ofctl查看交换机流表项
(三)个人总结
-
在验证POX的forwarding.hub和forwarding.l2_learning模块,我学到了在验证hub模块和l2_learning模块的过程中,hub模块利用的是泛洪机制,将数据包进行广播转发,此时交换机等效于集线器。因此无论h1 ping h2还是h3,都可以从h2 h3中抓到数据包;而l2_learning模块利用的是一种自学习机制,在交换机完成学习后,h3就不能够收到h1发向h2的数据包了。
-
创建的py文件无法保存,执行sudo chmod 777 032002104.py使其变成可读可写可执行
运行pox时error,重启虚拟机解决问题(遇事不决的时候重启就完了) -
总的来说这次实验对我来说难度还是不小的,经过这次实验我初步掌握了POX控制器的一些使用方法,熟悉了POX控制器如何下发流表。