首页 > 其他分享 >20240131

20240131

时间:2024-01-31 17:11:42浏览次数:30  
标签:tmp return int res vec 20240131 define

A. 选车站

枚举 \(x_i<0\) 可以 \(\mathcal{O}(\sqrt{x_i})\) 的计算出最小的 \(x_j>0\) 使得 \(-x_ix_j\) 为一个平方数,再枚举倍数即可

// Author: xiaruize
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ull unsigned long long
#define ALL(a) (a).begin(), (a).end()
#define pb push_back
#define mk make_pair
#define pii pair<int, int>
#define pis pair<int, string>
#define sec second
#define fir first
#define sz(a) int((a).size())
#define Yes cout << "Yes" << endl
#define YES cout << "YES" << endl
#define No cout << "No" << endl
#define NO cout << "NO" << endl
#define debug(x) cerr << #x << ": " << x << endl
#define mms(arr, n) memset(arr, n, sizeof(arr))
#define rep(i, a, n) for (int i = (a); i <= (n); ++i)
#define per(i, n, a) for (int i = (n); i >= (a); --i)
int max(int a, int b)
{
    if (a > b)
        return a;
    return b;
}
int min(int a, int b)
{
    if (a < b)
        return a;
    return b;
}
const int INF = 0x3f3f3f3f3f3f3f3f;
const int MOD = 1000000007;
const int N = 2e5 + 10;
const int M = 1e5;

// bool st;
int n, m;
int a[N], b[N];
bool mpx[N], mpy[N];
int res = 0;
// bool en;

void calc()
{
    bool flag = false;
    rep(i, 1, n) flag |= (a[i] == 0);
    if (flag)
        res += (n - 1) * m;
    rep(i, 1, n)
    {
        if (a[i] >= 0)
            continue;
        int x = -a[i], y = -a[i];
        int tmp = 1;
        rep(j, 2, x)
        {
            if (j * j > x)
                break;
            if (x % j == 0)
            {
                int cnt = 0;
                while (x % j == 0)
                {
                    x /= j;
                    cnt++;
                }
                if (cnt & 1)
                    tmp = tmp * j;
            }
        }
        tmp *= x;
        x = y;
        int cur = sqrt(x * tmp);
        // cerr << x << ' ' << tmp << ' ' << cur << endl;
        rep(p, 1, 400)
        {
            if (tmp * p * p > 1e5 || cur * p > 1e5)
                break;
            if (mpx[tmp * p * p + M] && mpy[cur * p + M])
                res++;
            if (mpx[tmp * p * p + M] && mpy[-cur * p + M])
                res++;
        }
    }
}

void solve()
{
    res = 0;
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));
    memset(mpx, 0, sizeof(mpx));
    memset(mpy, 0, sizeof(mpy));
    cin >> n >> m;
    rep(i, 1, n)
    {
        cin >> a[i];
        mpx[a[i] + M] = true;
    }
    rep(i, 1, m)
    {
        cin >> b[i];
        mpy[b[i] + M] = true;
    }
    sort(a + 1, a + n + 1);
    sort(b + 1, b + m + 1);
    calc();
    swap(a, b);
    swap(n, m);
    swap(mpx, mpy);
    calc();
    cout << res << endl;
}

signed main()
{
    // freopen("railway.in", "r", stdin);
    // freopen("railway.out", "w", stdout);
    // cerr<<(&en-&st)/1024.0/1024.0<<endl;
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int testcase = 1;
    cin >> testcase;
    while (testcase--)
        solve();
    return 0;
}

B. 好题

如好的题

\(dp_{i,j}\) 表示到 \(i\) 这个点,有 \(j\) 个不一样的,最小用几个

发现转移的时候没法去重

考虑记录每一个状态的前 \(30\) 个最小方案,然后dp就行

// Author: xiaruize
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ull unsigned long long
#define ALL(a) (a).begin(), (a).end()
#define pb push_back
#define mk make_pair
#define pii pair<int, int>
#define pis pair<int, string>
#define sec second
#define fir first
#define sz(a) int((a).size())
#define Yes cout << "Yes" << endl
#define YES cout << "YES" << endl
#define No cout << "No" << endl
#define NO cout << "NO" << endl
#define debug(x) cerr << #x << ": " << x << endl
#define mms(arr, n) memset(arr, n, sizeof(arr))
#define rep(i, a, n) for (int i = (a); i <= (n); ++i)
#define per(i, n, a) for (int i = (n); i >= (a); --i)
int max(int a, int b)
{
    if (a > b)
        return a;
    return b;
}
int min(int a, int b)
{
    if (a < b)
        return a;
    return b;
}
const int INF = 0x3f3f3f3f3f3f3f3f;
const int MOD = 1000000007;
const int N = 1e4 + 10;

// bool st;
int n, m;
int a[N];
vector<int> g[N];
struct node
{
    int val;
    vector<int> vec;

    bool operator<(node b) const
    {
        return val < b.val;
    }
};
vector<node> dp[N][12];
// bool en;

vector<node> operator+(vector<node> a, vector<node> b)
{
    vector<node> res;
    map<vector<int>, int> mp;
    for (auto u : a)
    {
        for (auto v : b)
        {
            node tmp;
            for (auto x : u.vec)
                tmp.vec.push_back(x);
            for (auto x : v.vec)
                tmp.vec.push_back(x);
            sort(ALL(tmp.vec));
            tmp.vec.resize(unique(ALL(tmp.vec)) - tmp.vec.begin());
            tmp.val = u.val + v.val;
            if (!mp.count(tmp.vec))
                mp[tmp.vec] = tmp.val;
            else
                mp[tmp.vec] = min(mp[tmp.vec], tmp.val);
        }
    }
    for (auto v : mp)
        res.push_back((node){v.second, v.first});
    sort(ALL(res));
    if (res.size() >= 30)
        res.resize(30);
    return res;
}

vector<node> cln(vector<node> a)
{
    vector<node> res;
    map<vector<int>, int> mp;
    for (auto tmp : a)
    {
        if (!mp.count(tmp.vec))
            mp[tmp.vec] = tmp.val;
        else
            mp[tmp.vec] = min(mp[tmp.vec], tmp.val);
    }
    for (auto v : mp)
        res.push_back((node){v.second, v.first});
    sort(ALL(res));
    if (res.size() >= 30)
        res.resize(30);
    return res;
}

int ans = INF;

void dfs(int x, int fa)
{
    dp[x][1].push_back({1, {a[x]}});
    for (auto v : g[x])
    {
        if (v == fa)
            continue;
        dfs(v, x);
        per(i, 10, 1)
        {
            rep(j, 1, i - 1)
            {
                if (!dp[x][i - j].empty() && !dp[v][j].empty())
                {
                    vector<node> vec = (dp[x][i - j] + dp[v][j]);
                    for (auto v : vec)
                    {
                        if (v.vec.size() <= 10)
                            dp[x][v.vec.size()].push_back(v);
                    }
                }
            }
        }
        rep(i, 1, 10)
        {
            dp[x][i] = cln(dp[x][i]);
        }
    }
    if (!dp[x][m].empty())
        ans = min(ans, dp[x][m].front().val);
}

void solve()
{
    cin >> n >> m;
    rep(i, 1, n) cin >> a[i];
    rep(i, 1, n - 1)
    {
        int u, v;
        cin >> u >> v;
        g[u].push_back(v);
        g[v].push_back(u);
    }
    dfs(1, 0);
    // if (ans == INF)
    // {
    //     while (1)
    //         ;
    // }
    cout << ans << endl;
}

signed main()
{
    // freopen(".in","r",stdin);
    // freopen(".out","w",stdout);
    // cerr<<(&en-&st)/1024.0/1024.0<<endl;
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int testcase = 1;
    // cin >> testcase;
    while (testcase--)
        solve();
    return 0;
}

C. 串串怎么你了

参考 loj6564

用 \(\frac{n^2}{64}\) 的时间复杂度做LCS就行

D. Bounce

对于每个点,拆点

黑白染色,钦定黑色格子横进竖出,白色格子横出竖进

强制经过的条件可以通过再拆点后两个点之间不连边,判最后的maxflow是不是 \(n\times m\)

最后的maxcost就是答案

// Author: xiaruize
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ull unsigned long long
#define ALL(a) (a).begin(), (a).end()
#define pb push_back
#define mk make_pair
#define pii pair<int, int>
#define pis pair<int, string>
#define sec second
#define fir first
#define sz(a) int((a).size())
#define Yes cout << "Yes" << endl
#define YES cout << "YES" << endl
#define No cout << "No" << endl
#define NO cout << "NO" << endl
#define debug(x) cerr << #x << ": " << x << endl
#define mms(arr, n) memset(arr, n, sizeof(arr))
#define rep(i, a, n) for (int i = (a); i <= (n); ++i)
#define per(i, n, a) for (int i = (n); i >= (a); --i)
int max(int a, int b)
{
    if (a > b)
        return a;
    return b;
}
int min(int a, int b)
{
    if (a < b)
        return a;
    return b;
}
const int INF = 0x3f3f3f3f3f3f3f3f;
const int MOD = 1000000007;
const int N = 2e5 + 10;

namespace MCMF
{
    const int MAXN = 2e3 + 10, MAXM = 2e4 + 10, INF = 0x7fffffff;
    int head[MAXN], cnt = 1;

    struct Edge
    {
        int to, w, c, next;
    } edges[MAXM * 2];
    int maxflow, mincost;

    void init()
    {
        maxflow = mincost = 0;
        memset(head, 0, sizeof(head));
        memset(edges, 0, sizeof(edges));
        cnt = 1;
    }

    inline void add(int from, int to, int w, int c)
    {
        edges[++cnt] = {to, w, c, head[from]};
        head[from] = cnt;
    }
    inline void addEdge(int from, int to, int w, int c)
    {
        add(from, to, w, c);
        add(to, from, 0, -c);
    }
    int s, t, dis[MAXN], cur[MAXN];
    bool inq[MAXN], vis[MAXN];
    queue<int> Q;
    bool SPFA()
    {
        while (!Q.empty())
            Q.pop();
        copy(head, head + MAXN, cur);
        fill(dis, dis + MAXN, INF);
        dis[s] = 0;
        Q.push(s);
        while (!Q.empty())
        {
            int p = Q.front();
            Q.pop();
            inq[p] = 0;
            for (int e = head[p]; e != 0; e = edges[e].next)
            {
                int to = edges[e].to, vol = edges[e].w;
                if (vol > 0 && dis[to] > dis[p] + edges[e].c)
                {
                    dis[to] = dis[p] + edges[e].c;
                    if (!inq[to])
                    {
                        Q.push(to);
                        inq[to] = 1;
                    }
                }
            }
        }
        return dis[t] != INF;
    }
    int dfs(int p = s, int flow = INF)
    {
        if (p == t)
            return flow;
        vis[p] = 1;
        int rmn = flow;
        for (int eg = cur[p]; eg && rmn; eg = edges[eg].next)
        {
            cur[p] = eg;
            int to = edges[eg].to, vol = edges[eg].w;
            if (vol > 0 && !vis[to] && dis[to] == dis[p] + edges[eg].c)
            {
                int c = dfs(to, min(vol, rmn));
                rmn -= c;
                edges[eg].w -= c;
                edges[eg ^ 1].w += c;
            }
        }
        vis[p] = 0;
        return flow - rmn;
    }
    inline void run(int s, int t)
    {
        MCMF::s = s, MCMF::t = t;
        while (SPFA())
        {
            int flow = dfs();
            maxflow += flow;
            mincost += dis[t] * flow;
        }
    }
} // namespace MCMF

// bool st;
int n, m;
map<pii, int> mp;
// bool en;

int id(int x, int y, int t)
{
    return (x - 1) * m + y + t * n * m;
}

void solve()
{
    mp.clear();
    MCMF::init();
    cin >> n >> m;
    rep(i, 1, n)
    {
        rep(j, 1, m - 1)
        {
            int x;
            cin >> x;
            if ((i + j) & 1)
                MCMF::addEdge(id(i, j, 0), id(i, j + 1, 1), 1, -x);
            else
                MCMF::addEdge(id(i, j + 1, 0), id(i, j, 1), 1, -x);
        }
    }
    rep(i, 1, n - 1)
    {
        rep(j, 1, m)
        {
            int x;
            cin >> x;
            if ((i + j) & 1)
                MCMF::addEdge(id(i + 1, j, 0), id(i, j, 1), 1, -x);
            else
                MCMF::addEdge(id(i, j, 0), id(i + 1, j, 1), 1, -x);
        }
    }
    int q;
    cin >> q;
    rep(i, 1, q)
    {
        int x, y;
        cin >> x >> y;
        mp[{x, y}] = true;
    }
    int s = n * m * 2 + 1, t = n * m * 2 + 2;
    rep(i, 1, n)
    {
        rep(j, 1, m)
        {
            MCMF::addEdge(s, id(i, j, 0), 1, 0);
            MCMF::addEdge(id(i, j, 1), t, 1, 0);
            if (!mp.count({i, j}))
                MCMF::addEdge(id(i, j, 0), id(i, j, 1), 1, 0);
        }
    }
    MCMF::run(s, t);
    if (MCMF::maxflow != n * m)
        cout << "Impossible" << endl;
    else
        cout << -MCMF::mincost << endl;
}

signed main()
{
    // freopen(".in","r",stdin);
    // freopen(".out","w",stdout);
    // cerr<<(&en-&st)/1024.0/1024.0<<endl;
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int testcase = 1;
    cin >> testcase;
    while (testcase--)
        solve();
    return 0;
}

标签:tmp,return,int,res,vec,20240131,define
From: https://www.cnblogs.com/xiaruize/p/17999634

相关文章

  • 杂题20240131
    CF1753C思路点拨考虑一共有\(s\)个\(0\),\(n-s\)个\(1\)。最终序列的形态就是\(s\)个\(0\)在最前面,后面全部都是\(1\)。考虑在前\(s\)个位置中有\(k\)个\(1\),那么只需要将这\(k\)个\(1\)移动到后面就可以了。考虑第一次有效操作的概率,有\(\dfrac{n(n-1)......
  • 算法模板 v1.6.1.20240131
    算法模板v1.1.1.20240115:之前的历史版本已经不可寻,创建了第一份算法模板。v1.2.1.20240116:删除“编译”-“手动开栈”与“编译”-“手动开O优化”;将“编译”-“CF模板”中的第20行代码cin>>T;注释;删除“读写”及其目录下的内容;删除“图论”-“欧拉图”-“混合图”;删除“图论”-......