首页 > 其他分享 >A+B问题1+105种解法

A+B问题1+105种解法

时间:2024-01-30 10:44:41浏览次数:30  
标签:std return int namespace 问题 using include 解法 105

个人写法

应该没有更短的了吧,挑战世界最短

a,b;main(){scanf("%d%d",&a,&b);printf("%d",a+b);}

要测试点这里

以下转自\(AcWing\)

=================

原作者为 Conan15

要测试点

温馨提示:此题解适合人群为算法学习者,不那么适合语法基础课还没学完的学生

为了不误导初学者
先放一波正常代码:

/*
             A          K         K         CCCCCCCCCCCC SSSSSSSSSSS  PPPPPPPPPPPPP
            A A         K       K          C             S            P           P
           A   A        K     K           C              S            P           P
          A     A       K   K            C               S            P           P
         A       A      K K              C               SSSSSSSSSSS  PPPPPPPPPPPPP
        AAAAAAAAAAA     K   K            C                         S  P
       A           A    K     K           C                        S  P
      A             A   K       K          C                       S  P
     A               A  K         K         CCCCCCCCCCC  SSSSSSSSSSS  P


             A          K         K         IIIIIIIIIII    OOOOOOOOOOO    IIIIIIIIIII
            A A         K       K                I         O         O         I
           A   A        K     K                  I         O         O         I
          A     A       K   K                    I         O         O         I
         A       A      K K                      I         O         O         I
        AAAAAAAAAAA     K   K                    I         O         O         I
       A           A    K     K                  I         O         O         I
      A             A   K       K                I         O         O         I
     A               A  K         K         IIIIIIIIIII    OOOOOOOOOOO    IIIIIIIIIII
*/
#include 
using namespace std;
int a, b;                   //定义两个整型变量a和b
int main() {
    scanf("%d%d", &a, &b);  //读入a和b,当然用cin也没毛病
    printf("%d\n", a + b);  //输出a+b,当然用cout也没毛病
    return 0;
}

算法一、DFS一号

#include 
using namespace std;
int n = 2, a[5], s;
int dfs(int x, int sum) {
    if (x > n) return sum;
    int i = dfs(x + 1, sum);
    int j = dfs(x + 1, sum + a[x]);
    if (i == s) return i;
    if (j == s) return j;
    return -1;
}
int main() {
    for (int i = 1;i <= n; i++) scanf("%d", &a[i]), s += a[i];
    cout << dfs(1, 0) << endl;
    return 0;
}

算法二、DFS二号

#include 
using namespace std;
int a, b;
int dfs(int x) {
    if (x <= 5) return x;
    return dfs(x / 2) + dfs(x - x / 2);
} 
int main() {
    scanf("%d%d", &a, &b);
    printf("%d\n", dfs(a) + dfs(b));
    return 0;
}

算法三、BFS

#include 
using namespace std;
int n = 2, a[5], s;
queue q;
void bfs() {
    q.push(0);
    int c = 0;
    while (q.size()) {
        c++;
        int f = q.front(); q.pop();
        if (f == s) {printf("%d\n", f); exit(0);}
        q.push(f + a[c]);
        q.push(f);
    }
}
int main() {
    for (int i = 1;i <= n; i++) scanf("%d", &a[i]), s += a[i];
    bfs();
    return 0;
}

算法四、直接算咯

#include 
using namespace std;
int a, b;
int main() {
    scanf("%d%d", &a, &b);
    printf("%d\n", a + b);
    return 0;
}

算法五、二分

#include 
using namespace std;
int a, b;
int main() {
    scanf("%d%d", &a, &b);
    int l = 0, r = 200000000;
    while (l < r) {
        int mid = l + r >> 1;
        if (mid == a + b) {printf("%d\n", mid); return 0;}
        if (mid <  a + b) l = mid + 1;
        if (mid >  a + b) r = mid - 1;
    }
    cout << l << endl;
    return 0;
}

算法六、稍微有点暴力的枚举

但是还是1892ms
1892


卡过了欸

#include 
using namespace std;
int a, b;
int main() {
    scanf("%d%d", &a, &b);
    for (int i = 0;i <= 200000000; i++) if (a + b == i) {printf("%d\n", i); break;}
    return 0;
}

算法七、最短路之dijkstra

思路:定义节点1到节点2路径长度为a,节点2到节点3路径长度为b
则答案为节点1到节点3的最短路(也就是\(a+b\))

#include 
using namespace std;
int w[5][5], d[5], v[5];
int n = 3;
void dijkstra() {
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[1] = 0;
    for (int i = 1;i < n; i++) {
        int x = 0;
        for (int j = 1;j <= n; j++)
            if (!v[j] && (x == 0 || d[j] < d[x])) x = j;
        v[x] = 1;
        for (int y = 1;y <= n; y++)
            d[y] = min(d[y], d[x] + w[x][y]);
    }
}
int main() {
    int a, b; scanf("%d%d", &a, &b);
    memset(w, 0x3f, sizeof w);
    w[1][2] = a; w[2][3] = b;
    dijkstra();
    printf("%d\n", d[3]);
    return 0;
}

算法八、最短路之SPFA

思路同上

#include 
using namespace std;
int a, b, n = 3;
int w[5][5], d[5], v[5];
queue q;
void spfa() {
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[1] = 0, v[1] = 1;
    q.push(1);
    while (q.size()) {
        int x = q.front(); q.pop();
        v[x] = 0;
        for (int i = 1;i <= n; i++) {
//          if (w[x][i] == 0x3f) continue;
            if (d[i] > d[x] + w[x][i]) {
                d[i] = d[x] + w[x][i];
                if (!v[i]) q.push(i), v[i] = 1;
            }
        }
    }
}
int main() {
    scanf("%d%d", &a, &b);
    memset(w, 0x3f, sizeof w);
    w[1][2] = a; w[2][3] = b;
    spfa();
    printf("%d\n", d[3]);
    return 0;
}

算法九、最短路之Floyd

思路同上

#include 
using namespace std;
int d[5][5], n = 3;
int main() {
    int a, b; scanf("%d%d", &a, &b);
    memset(d, 0x3f, sizeof d);
    d[1][2] = a; d[2][3] = b;
    for (int k = 1;k <= n; k++)
        for (int i = 1;i <= n; i++)
            for (int j = 1;j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    printf("%d\n", d[1][3]);
    return 0;
}

算法十、高精

#include
using namespace std;
string a0, b0;
int a[1005], b[1005];
int main(){
    cin >> a0 >> b0;
    int l1 = a0.size(), l2 = b0.size();
    for (int i = 0;i < l1; i++) a[l1 - i] = a0[i] - 48;
    for (int i = 0;i < l2; i++) b[l2 - i] = b0[i] - 48;
    l1 = max(l1, l2);
    for (int i = 1;i <= l1; i++) {
        a[i] += b[i];
        if (a[i] > 9) a[i + 1] += 1, a[i] %= 10;
    }
    if (a[max(l1, l2) + 1] > 0) l1++;
    for (int i = l1;i >= 1; i--) printf("%d", a[i]);
    return 0;
}

算法十一、最小生成树之kruskal

思路其实和最短路的一样,只是改成用最小生成树的方法求罢了

#include 
using namespace std;
struct rec {
    int x, y, z;
} edge[5];

int fa[5], m = 2, ans = 0;

int get(int x) {
    if (x == fa[x]) return x;
    return fa[x] = get(fa[x]);
}
int cmp(rec a, rec b) { return a.z < b.z; }

int main() {
    int a, b; scanf("%d%d", &a, &b);
    edge[1] = (rec){1, 2, a};
    edge[2] = (rec){2, 3, b};
    for (int i = 1;i <= m + 1; i++) fa[i] = i;
    sort(edge + 1, edge + 1 + m, cmp);
    for (int i = 1;i <= m; i++) {
        int x = get(edge[i].x);
        int y = get(edge[i].y);
        if (x == y) continue;
        fa[x] = y;
        ans += edge[i].z;
    }
    printf("%d\n", ans);
    return 0;
}

算法十二、最小生成树之prim

思路同上

#include 
using namespace std;
int w[5][5], d[5], n = 3, ans, v[5];

void prim() {
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[1] = 0;
    for (int i = 1;i < n; i++) {
        int x = 0;
        for (int j = 1;j <= n; j++)
            if (!v[j] && (x == 0 || d[j] < d[x])) x = j;
        v[x] = 1;
        for (int y = 1;y <= n; y++)
            if (!v[y]) d[y] = min(d[y], w[x][y]);
    }
}
int main() {
    int a, b; scanf("%d%d", &a, &b);
    memset(w, 0x3f, sizeof w);
    w[1][2] = a; w[2][3] = b;
    prim();
    int ans = 0;
    for (int i = 2;i <= n; i++) ans += d[i];
    printf("%d\n", ans);
    return 0;
}

算法十三、前缀和

#include 
using namespace std;
int a[5], s[5];
int main() {
    for (int i = 1;i <= 2; i++) scanf("%d", &a[i]), s[i] += a[i] + s[i - 1];
    printf("%d\n", s[2]);
    return 0;
}

算法十四、后缀和

#include 
using namespace std;
int a[5], s[5];
int main() {
    for (int i = 2;i >= 1; i--) scanf("%d", &a[i]), s[i] += a[i] + s[i + 1];
    printf("%d\n", s[1]);
    return 0;
}

算法十五、位运算

#include 
using namespace std;
int add(int a, int b) {
    if (b == 0) return a;
    return add(a ^ b, (a & b) << 1);
}
int main() {
    int a, b; scanf("%d%d", &a, &b);
    printf("%d\n", add(a, b));
    return 0;
}

算法十六、树的直径——BFS

emmm……思路继续和最短路的一样。。。

#include 
using namespace std;
const int maxn = 1e5 + 10;

int head[maxn * 2],edge[maxn * 2],Next[maxn * 2],ver[maxn * 2];
int vis[maxn], dist[maxn];
int n = 3, p, q, d;
int tot = 0;
int maxd = 0;

void add(int u,int v,int w) {
    ver[ ++ tot] = v,edge[tot] = w;
    Next[tot] = head[u],head[u] = tot;
}

int BFS(int u) {
    queueQ;
    while(!Q.empty()) Q.pop();
    memset(vis, 0, sizeof vis);
    memset(dist, 0, sizeof dist);  
    Q.push(u);
    int x, max_num = 0;
    while(!Q.empty()) {
        x = Q.front();
        Q.pop();
        vis[x] = 1;
        for(int i = head[x]; i ; i = Next[i]) {
            int y = ver[i];
            if(vis[y]) continue;
            vis[y] = 1;
            dist[y] = dist[x] + edge[i];
            if(dist[y] > maxd) {
                maxd = dist[y];
                max_num = y;
            }
            Q.push(y);
        }
    }
    return max_num;
}
int main(void) {
    int a, b; scanf("%d%d", &a, &b);
    add(1, 2, a); add(2, 1, a);
    add(2, 3, b); add(3, 2, b);
    BFS(BFS(1));
    int ans = 0;
    for (int i = 1;i <= n; i++) ans = max(ans, dist[i]);
    printf("%d\n", ans);
    return 0;
}

算法十七、树的直径——DFS

思路同上

#include
#define maxn 100000
using namespace std;
struct node {
    int u, v, w, nex;
} edge[2 * maxn + 10];
int n = 3, d[maxn + 10], head[maxn + 10], f_num, cnt = 0, ans;
inline void add(int x,int y,int z) {
    edge[++cnt].u = x;
    edge[cnt].v = y;
    edge[cnt].w = z;
    edge[cnt].nex = head[x];
    head[x] = cnt;
}
inline void dfs(int x, int fa) {
    if(ans < d[x]) {
        ans = d[x];
        f_num = x;
    }
    for (int i = head[x]; i != -1; i = edge[i].nex) {
        int j = edge[i].v;
        if (j == fa)continue;
        d[j] = d[x] + edge[i].w;    
        dfs(j, x);
    }
}
int main() {
    memset(head, -1, sizeof(head));
    int a, b; scanf("%d%d", &a, &b);
    add(1, 2, a); add(2, 1, a);
    add(2, 3, b); add(3, 2, b);
    dfs(1, 0);
    ans = 0;
    d[f_num] = 0;
    dfs(f_num, 0);
    for (int i = 1;i <= n; i++) ans = max(ans, d[i]);
    printf("%d", ans);
    return 0;
}

算法十八、树的直径——树形DP

还是一样咯

#include 
using namespace std;
int f[5], n = 3, cnt, h[5], ans, dis[5];
struct edge {
    int to, next, vi;
} e[5];
void add(int u, int v, int w) {
    e[cnt].to= v;
    e[cnt].vi = w;
    e[cnt].next = h[u];
    h[u] = cnt++;
}
void dp(int u, int fa) {
    for (int i = h[u]; ~i; i = e[i].next) {
        int v = e[i].to;
        if (v == fa) continue;
        dp(v, u);
        ans = max(ans, dis[v] + dis[u] + e[i].vi);
        dis[u] = max(dis[u], dis[v] + e[i].vi);
    }
}
int main() {
    memset(h, -1, sizeof h);
    int a, b; scanf("%d%d", &a, &b);
    add(1, 2, a); add(2, 1, a);
    add(2, 3, b); add(3, 2, b);
    dp(1, 0);
    printf("%d\n", ans);
    return 0;
}

算法十九、网络流

从别的大佬那边搞过来的,但是一点都看不懂┭┮﹏┭┮

#include
using namespace std;
#define set(x) Set(x)
#define REP(i,j,k) for (int i=(j),_end_=(k);i<=_end_;++i)
#define DREP(i,j,k) for (int i=(j),_start_=(k);i>=_start_;--i)
#define mp make_pair
#define x first
#define y second
#define pb push_back
template inline bool chkmin(T &a,const T &b){ return a > b ? a = b, 1 : 0; }
template inline bool chkmax(T &a,const T &b){ return a < b ? a = b, 1 : 0; }
typedef long long LL;
typedef pair node;
const int dmax = 1010, oo = 0x3f3f3f3f;
int n, m;
int a[dmax][dmax] , ans;
int d[dmax], e[dmax];
priority_queue  q;
inline bool operator >(node a,node b){ return a.y>b.y; }
bool p[dmax];
void Set(int x){ p[x] = 1; }
void unset(int x){ p[x] = 0; }
bool check(int x){ return x != 1 && x != n && !p[x] && e[x] > 0; }
void preflow(){
    e[1] = oo;
    d[1] = n - 1;
    q.push(mp(1, n - 1));
    set(1);
    while (!q.empty()) {
        bool flag = 1;
        int k = q.top().x;
        q.pop(), unset(k);
        DREP(i, n, 1)
        if ((d[k] == d[i] + 1 || k == 1) && a[k][i] > 0){
            flag = 0;
            int t = min(a[k][i], e[k]);
            e[k] -= t;
            a[k][i] -= t;
            e[i] += t;
            a[i][k] += t;
            if (check(i)) {
                q.push(mp(i, d[i]));
                set(i);
            }
            if (e[k] == 0) break;
        }
        if (flag) {
            d[k] = oo;
            REP(i, 1, n)
            if (a[k][i] > 0) chkmin(d[k], d[i] + 1);
        }
        if (check(k)) {
            q.push(mp(k, d[k]));
            set(k);
        }
    }
    ans = e[n];
}
int main() {
    n = 2, m = 2;
    int x, y;
    scanf("%d%d", &x, &y);
    a[1][2] += x + y;
    preflow();
    printf("%d\n", ans);
    return 0;
}

算法二十、线段树

转化为区间求和问题

#include 
#define l(x) tree[x].l
#define r(x) tree[x].r
#define sum(x) tree[x].sum
#define add(x) tree[x].add
using namespace std;
struct SegmentTree {
    int l, r; //区间左右端点 
    long long sum, add; //sum 区间和  add 延迟标记 
} tree[400010];
int a[100010], n = 1, m = 2;
void build (int p, int l, int r) {
    l(p) = l, r(p) = r;
    if(l == r) {sum(p) = a[l]; return;}
    int mid = l + r >> 1;
    build(p * 2, l, mid);
    build(p * 2 + 1, mid + 1, r);
    sum(p) = sum(p * 2) + sum(p * 2 + 1);
}
void spread(int p) {
    if(add(p)) { //节点p有标记 
        sum(p * 2) += add(p) * (r(p * 2) - l(p * 2) + 1); //更新左子节点信息 
        sum(p * 2 + 1) += add(p) * (r(p * 2 + 1) - l(p * 2 + 1) + 1); //更新右子节点
        add(p * 2) += add(p); //给左子节点打延迟标记 
        add(p * 2 + 1) += add(p); //给右子节点打延迟标记 
        add(p) = 0; //清除p的标记 
    }
}
void change(int p, int l, int r, int d) {
    if(l <= l(p) && r >= r(p)) { //完全覆盖 
        sum(p) += (long long) d * (r(p) - l(p) + 1); //更新节点信息 
        add(p) += d; //给节点打延迟标记 
        return;
    }
    spread(p); //下传延迟标记 
    int mid = l(p) + r(p) >> 1;
    if(l <= mid) change(p * 2, l, r, d);
    if(r > mid) change(p * 2 + 1, l, r, d);
    sum(p) = sum(p * 2) + sum(p * 2 + 1);
}
long long ask(int p, int l, int r) {
    if(l <= l(p) && r >= r(p)) return sum(p);
    spread(p);
    int mid = l(p) + r(p) >> 1;
    long long val = 0;
    if(l <= mid) val += ask(p * 2, l, r);
    if(r > mid) val += ask(p * 2 + 1, l, r);
    return val;
}
int main() {
    a[1] = 0;
    build(1, 1, n);
    while(m--) { 
        int d = 0;
        scanf("%d", &d);
        change(1, 1, 1, d);
    }
    printf("%lld\n", ask(1, 1, 1));
    return 0;
}

算法二十一、树状数组

思路一样,区间求和

#include
using namespace std;
const int SIZE = 100010;
int a[SIZE], n = 1, m = 2;
long long c[2][SIZE], sum[SIZE];

long long ask(int k, int x) {
    long long ans = 0;
    for(; x ; x -= x & -x) ans += c[k][x];
    return ans;
}

void add(int k,int x,int y) {
    for(; x <= n; x += x & -x) c[k][x] += y;
}

int main() {
    a[1] = 0;
    while(m--) {
        int d = 0;
        scanf("%d", &d);
        add(0, 1, d);
        add(0, 2, -d);
        add(1, 1, d);
        add(1, 2, -2 * d);
    }
    long long ans = sum[1] + 2 * ask(0, 1) - ask(1, 1);
    ans -= sum[0] + 1 * ask(0, 0) - ask(1, 0);
    printf("%lld\n", ans);
    return 0;
}

算法二十二、分块

思路一样,区间求和

#include
using namespace std;
long long a[50000010], sum[50000010], add[50000010];
int L[50000010], R[50000010];
int pos[50000010];
int n = 1, m = 2, t;

void change(int l, int r, long long d) {
    int p = pos[l], q = pos[r];
    if (p == q) {
        for (int i = l; i <= r; i++) a[i] += d;
        sum[p] += d*(r - l + 1);
    }
    else {
        for (int i = p + 1; i <= q - 1; i++) add[i] += d;
        for (int i = l; i <= R[p]; i++) a[i] += d;
        sum[p] += d*(R[p] - l + 1);
        for (int i = L[q]; i <= r; i++) a[i] += d;
        sum[q] += d*(r - L[q] + 1);
    }
}

long long ask(int l, int r) {
    int p = pos[l], q = pos[r];
    long long ans = 0;
    if (p == q) {
        for (int i = l; i <= r; i++) ans += a[i];
        ans += add[p] * (r - l + 1);
    }
    else {
        for (int i = p + 1; i <= q - 1; i++)
            ans += sum[i] + add[i] * (R[i] - L[i] + 1);
        for (int i = l; i <= R[p]; i++) ans += a[i];
        ans += add[p] * (R[p] - l + 1);
        for (int i = L[q]; i <= r; i++) ans += a[i];
        ans += add[q] * (r - L[q] + 1);
    }
    return ans;
}

int main() {
    a[1] = 0;
    t = sqrt(n*1.0);
    for (int i = 1; i <= t; i++) {
        L[i] = (i - 1)*sqrt(n*1.0) + 1;
        R[i] = i*sqrt(n*1.0);
    }
    if (R[t] < n) t++, L[t] = R[t - 1] + 1, R[t] = n;
    for (int i = 1; i <= t; i++)
        for (int j = L[i]; j <= R[i]; j++) {
            pos[j] = i;
            sum[i] += a[j];
        }
    while (m--) {
        int d;
        scanf("%d", &d);
        change(1, 1, d);
    }
    printf("%lld\n", ask(1, 1));
}

算法二十三、LCT

来自洛谷

#include
using namespace std;
struct node
{
    int data,rev,sum;
    node *son[2],*pre;
    bool judge();
    bool isroot();
    void pushdown();
    void update();
    void setson(node *child,int lr);
}lct[233];
int top,a,b;
node *getnew(int x)
{
    node *now=lct+ ++top;
    now->data=x;
    now->pre=now->son[1]=now->son[0]=lct;
    now->sum=0;
    now->rev=0;
    return now;
}
bool node::judge()
{
    return pre->son[1]==this;
}
bool node::isroot()
{
    if(pre==lct)return true;
    return !(pre->son[1]==this||pre->son[0]==this);
}
void node::pushdown()
{
    if(this==lct||!rev)return;
    swap(son[0],son[1]);
    son[0]->rev^=1;
    son[1]->rev^=1;
    rev=0;
}
void node::update()
{
    sum=son[1]->sum+son[0]->sum+data;
}
void node::setson(node *child,int lr)
{
    this->pushdown();
    child->pre=this;
    son[lr]=child;
    this->update();
}
void rotate(node *now)
{
    node *father=now->pre,*grandfa=father->pre;
    if(!father->isroot()) grandfa->pushdown();
    father->pushdown();
    now->pushdown();
    int lr=now->judge();
    father->setson(now->son[lr^1],lr);
    if(father->isroot()) now->pre=grandfa;
    else grandfa->setson(now,father->judge());
    now->setson(father,lr^1);
    father->update();
    now->update();
    if(grandfa!=lct) grandfa->update();
}
void splay(node *now)
{
    if(now->isroot())return;
    for(; !now->isroot(); rotate(now))
    if(!now->pre->isroot())
    now->judge()==now->pre->judge()?rotate(now->pre):rotate(now);
}
node *access(node *now)
{
    node *last=lct;
    for(; now!=lct; last=now,now=now->pre) {
        splay(now);
        now->setson(last,1);
    }
    return last;
}
void changeroot(node *now)
{
    access(now)->rev^=1;
    splay(now);
}
void connect(node *x,node *y)
{
    changeroot(x);
    x->pre=y;
    access(x);
}
void cut(node *x,node *y)
{
    changeroot(x);
    access(y);
    splay(x);
    x->pushdown();
    x->son[1]=y->pre=lct;
    x->update();
}
int query(node *x,node *y)
{
    changeroot(x);
    node *now=access(y);
    return now->sum;
}
int main()
{
    scanf("%d%d",&a,&b);
    node *A=getnew(a);
    node *B=getnew(b);
    connect(A,B);
    cut(A,B);
    connect(A,B);
    printf("%d",query(A,B));
    return 0;
}

算法二十四、Splay

来自洛谷

#include 
#define ll long long
#define N 100000
using namespace std;
int sz[N], rev[N], tag[N], sum[N], ch[N][2], fa[N], val[N];
int n, m, rt, x;
void push_up(int x){
    sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
    sum[x] = sum[ch[x][1]] + sum[ch[x][0]] + val[x];
}
void push_down(int x){
    if(rev[x]){
        swap(ch[x][0], ch[x][1]);
        if(ch[x][1]) rev[ch[x][1]] ^= 1;
        if(ch[x][0]) rev[ch[x][0]] ^= 1;
        rev[x] = 0;
    }
    if(tag[x]){
        if(ch[x][1]) tag[ch[x][1]] += tag[x], sum[ch[x][1]] += tag[x];
        if(ch[x][0]) tag[ch[x][0]] += tag[x], sum[ch[x][0]] += tag[x];
        tag[x] = 0;
    }
}
void rotate(int x, int &k){
    int y = fa[x], z = fa[fa[x]];
    int kind = ch[y][1] == x;
    if(y == k) k = x;
    else ch[z][ch[z][1]==y] = x;
    fa[x] = z; fa[y] = x; fa[ch[x][!kind]] = y;
    ch[y][kind] = ch[x][!kind]; ch[x][!kind] = y;
    push_up(y); push_up(x);
}
void splay(int x, int &k){
    while(x != k){
        int y = fa[x], z = fa[fa[x]];
        if(y != k) if(ch[y][1] == x ^ ch[z][1] == y) rotate(x, k);
        else rotate(y, k);
        rotate(x, k);
    }
}
int kth(int x, int k){
    push_down(x);
    int r = sz[ch[x][0]]+1;
    if(k == r) return x;
    if(k < r) return kth(ch[x][0], k);
    else return kth(ch[x][1], k-r);
}
void split(int l, int r){
    int x = kth(rt, l), y = kth(rt, r+2);
    splay(x, rt); splay(y, ch[rt][1]);
}
void rever(int l, int r){
    split(l, r);
    rev[ch[ch[rt][1]][0]] ^= 1;
}
void add(int l, int r, int v){
    split(l, r);
    tag[ch[ch[rt][1]][0]] += v;
    val[ch[ch[rt][1]][0]] += v;
    push_up(ch[ch[rt][1]][0]);
}
int build(int l, int r, int f){
    if(l > r) return 0;
    if(l == r){
        fa[l] = f;
        sz[l] = 1;
        return l;
    }
    int mid = l + r >> 1;
    ch[mid][0] = build(l, mid-1, mid);
    ch[mid][1] = build(mid+1, r, mid);
    fa[mid] = f;
    push_up(mid);
    return mid;
}
int asksum(int l, int r){
    split(l, r);
    return sum[ch[ch[rt][1]][0]];
}
int main(){
    //总共两个数
    n = 2;
    rt = build(1, n+2, 0);//建树
    for(int i = 1; i <= n; i++){
        scanf("%d", &x);
        add(i, i, x);//区间加
    }
    rever(1, n);//区间翻转
    printf("%d\n", asksum(1, n));//区间求和
    return 0;
}

算法二十五、LCA

来自洛谷

#include                                                  //头文件
#define NI 2                                                          
//从来不喜欢算log所以一般用常数 不知道算不算坏习惯 因为3个节点 所以log3(当然以2为底)上取整得2
struct edge
{
    int to,next,data;                                              //分别表示边的终点,下一条边的编号和边的权值
}e[30];                                                                     //邻接表,点少边少开30是为了浪啊
int v[10],d[10],lca[10][NI+1],f[10][NI+1],tot=0;      //数组开到10依然为了浪
//数组还解释嘛,v表示第一条边在邻接表中的编号,d是深度,lca[x][i]表示x向上跳2^i的节点,f[x][i]表示x向上跳2^i的距离和
void build(int x,int y,int z)                                      //建边
{
    e[++tot].to=y; e[tot].data=z; e[tot].next=v[x]; v[x]=tot;
    e[++tot].to=x; e[tot].data=z; e[tot].next=v[y]; v[y]=tot;
}
void dfs(int x)                                                        //递归建树
{
    for(int i=1;i<=NI;i++)                                   //懒,所以常数懒得优化
        f[x][i]=f[x][i-1]+f[lca[x][i-1]][i-1],
        lca[x][i]=lca[lca[x][i-1]][i-1];                   //建树的同时进行预处理
    for(int i=v[x];i;i=e[i].next)                              //遍历每个连接的点
    {
        int y=e[i].to;
        if(lca[x][0]==y) continue;
        lca[y][0]=x;                                       //小技巧:lca[x][0]即为x的父亲~~(向上跳2^0=1不就是父节点嘛)
        f[y][0]=e[i].data;
        d[y]=d[x]+1;
        dfs(y);                                            //再以这个节点为根建子树【这里真的用得到嘛??】
    }
}
int ask(int x,int y)                                             //询问,也是关键
{                                                                        
    if(d[x]=0;i--)                                  //不知道能不能正着循环,好像倒着优,反正记得倒着就好了
        if(lca[x][i]!=lca[y][i])                            //如果x跳2^i和y跳2^j没跳到一起就让他们跳
            ans+=f[x][i]+f[y][i],
            x=lca[x][i],y=lca[y][i];
    return ans+f[x][0]+f[y][0];                           //跳到LCA上去(每步跳的时候都要更新信息,而且要在跳之前更新信息哦~)
}
int main()
{
    int a,b;
    scanf("%d%d",&a,&b);
    build(1,2,a);
    build(1,3,b);                                                       //分别建1 2、1 3之间的边
    dfs(1);                                                                //以1为根建树
    printf("%d",ask(2,3));                                         //求解2 3到它们的LCA的距离和并输出
}

算法二十六、字典树

来自洛谷

#include
#include
#include
#include
using namespace std;
struct node{
    int str[26];
    int sum;
}s[1000];
char str1[100];
int t=0,tot=0,ss=0;
bool f1;
void built()
{
    t=0;
    for(int i=0;i
using namespace std;
int dis[50], u[50], v[50], w[50], n, m;
void bellman(int start) {
    for (int i = 1;i <= n; i++) dis[i] = 0x3f3f3f3f;
    dis[start] = 0;
    for (int i = 1;i < n; i++)
        for (int j = 1;j <= m; j++)
            if (dis[v[j]] > dis[u[j]] + w[j]) dis[v[j]] = dis[u[j]] + w[j];
}
int main() {
    n = 3; m = 2;
    for (int i = 1;i <= m; i++) cin  >> w[i], u[i] = i, v[i] = i + 1;
    bellman(1);
    printf("%d\n", dis[3]);
    return 0;
}

算法二十八、_可耻的_打表

#include 
using namespace std;
int a, b; int main() { 
    scanf("%d%d", &a, &b);
    if (a == 3 && b == 4) printf("7");
    if (a == 45 && b == 55) printf("100");
    if (a == 123 && b == 321) printf("444");
    if (a == 91086199 && b == 18700332) printf("109786531");
    if (a == 42267194 && b == 60645282) printf("102912476");
    if (a == 69274392 && b == 10635835) printf("79910227");
    if (a == 5710219 && b == 85140568) printf("90850787");
    if (a == 75601477 && b == 24005804) printf("99607281");
    if (a == 70597795 && b == 90383234) printf("160981029");
    if (a == 82574652 && b == 22252146) printf("104826798");
    return 0;           //hh,这个len没加上return 0,还是我加的……
}

算法二十九、SPFA求最短路之SLF优化

呃呃呃就是加了个SLF优化而已

#include
using namespace  std;
const int maxn = 100000 + 10;
const int INF = 0x7FFFFFFF;

int pre[maxn], dis[maxn], path[maxn];
bool vis[maxn];
int head[maxn], n, m;

int tot, cnt;
struct node {
    int v, w, next;
} E[2 * maxn];
void add(int u, int v, int w) {
    E[tot].v = v;
    E[tot].w = w;
    E[tot].next = head[u];
    head[u] = tot++;
}
void init() {
    tot = 0;
    memset(vis, 0, sizeof vis);
    memset(head, -1, sizeof head);
}
void spfa(int st) {
    for (int i = 1;i <= n; i++) vis[i] = false, dis[i] = INF;
    int now, next;
    dis[st] = 0; vis[st] = 1;
    deque q;
    q.push_back(st);
    pre[st] = -1;
    while(!q.empty()) {
        now = q.front();
        q.pop_front();
        vis[now] = 0;
        for (int i = head[now]; i != -1;i = E[i].next) {
            next = E[i].v;
            if(dis[next] > dis[now] + E[i].w) {
                dis[next] = dis[now] + E[i].w;
                pre[next] = now;
                if(!vis[next]) {
                        vis[next] = 1; 
                        if (q.empty() || dis[next] > dis[q.front()]) q.push_back(next);
                        else q.push_front(next);
                }
            }
        }
    }
}
void print(int x) {
    if(pre[x] == -1) return;
    print(pre[x]);
    printf("%d ", x);
}
int main() {
    init();
    n = 3; m = 2;
    int w;
    for (int i = 1;i <= m; i++) {scanf("%d", &w); add(i, i + 1, w);}
    spfa(1);
    if(dis[n] == INF) puts("-1");
    else printf("%d\n", dis[n]);
    return 0;
}

算法三十、SPFA之LLL优化

#include
#define MAXN 10010
#define MAXM 500010
#define MAX 2147483647
using namespace std;
int n, m, t, c = 1;
int head[MAXN], path[MAXN];
bool vis[MAXN];
struct node {
    int next, to, w;
}a[MAXM << 1];
inline int relax (int u, int v, int w) {
    if (path[v] > path[u] + w) {
        path[v] = path[u] + w;
        return 1;
    }
    return 0;
}
inline void add(int u, int v, int w) {
    a[c].to = v;
    a[c].w = w;
    a[c].next = head[u];
    head[u] = c++;
}
void spfa() {
    int u, v, num = 0;
    long long x = 0;
    list q;
    for (int i = 1;i <= n; i++){path[i] = MAX; vis[i] = 0;}
    path[1] = 0;
    vis[1] = 1;
    q.push_back(1);
    num++;
    while (!q.empty()) {
        u = q.front();
        q.pop_front();
        num--; x -= path[u];
        while (num && path[u] > x / num){
            q.push_back(u);
            u = q.front();
            q.pop_front();
        }
        vis[u] = 0;
        for (int i = head[u]; i ; i = a[i].next) {
            v = a[i].to;
            if (relax(u, v, a[i].w) && !vis[v]) {
                vis[v] = 1;
                if(!q.empty() && path[v] < path[q.front()]) q.push_front(v);
                else q.push_back(v);
                num++; x += path[v];
            }
        }
    }
}
int main() {
    n = 3; m = 2;
    for (int i = 1;i <= m; i++) {
        int w;
        scanf("%d", &w);
        add(i, i + 1, w);
    }
    spfa();
    printf("%d\n", path[n]);
    return 0;
}

算法三十一、SPFA之SLF+LLL优化算法

#include 
using namespace std;
const int INF = 1 << 30;
const int gg = 200000 + 11;
int head[gg], dis[gg], n, m, cnt;
bool vis[gg];
int sum, tot;
struct node{
    int net, to, w;
} a[gg];

inline void add(int i, int j, int w) {
    a[++cnt].to = j;
    a[cnt].net = head[i];
    a[cnt].w = w;
    head[i] = cnt;
}

inline void spfa(int s) {
    deque q;
    for (int i = 1;i <= n; i++) dis[i] = INF;
    dis[s] = 0; vis[s] = 1;    
    q.push_back(s);
    tot = 1;
    while(!q.empty()) {
        int u = q.front();
        q.pop_front();
        vis[u] = false;
        tot--;
        sum -= dis[u];
        for (int i = head[u]; ~i ; i = a[i].net) {
            int v = a[i].to;
            if (dis[v] > dis[u] + a[i].w) {
                dis[v] = dis[u] + a[i].w;
                if(!vis[v]) {
                    vis[v] = 1;
                    if (q.empty() || dis[v] > dis[q.front()] || dis[v] * tot <= sum) q.push_back(v);
                    tot++;
                    sum += dis[v];
                }
            }
        }
    }
}

int main() {
    memset(head, -1, sizeof head);
    n = 3; m = 2;
    for (int i = 1;i <= m; i++) {
        int w = 0;
        scanf("%d", &w);
        add(i, i + 1, w);
    }
    spfa(1);
    if (dis[n] == INF)  puts("-1");
    else printf("%d\n", dis[n]);
    return 0;
}

算法三十二、只用一个变量跑A+B

把一个long long拆成两个int
指针啊!!!

#include
using namespace std;
long long a;
int main() {
    scanf("%d%d", (int*)(&a), (int*)(&a+1));
    printf("%d\n", *((int*)&a) + *((int*)(&a+1)));
    return 0;
}

算法三十三、矩阵乘法

#include
using namespace std;
int a, b;
int x[2][2] = {
    {0, 1},
    {1, 1}
};
void mo(int f[]) {
    int ans[2] = {0};
    for(int i = 0; i < 2; i++)
        for(int j = 0; j < 2; j++) ans[i] += f[j] * x[i][j];
    for(int i = 0; i < 2; i++) f[i] = ans[i];
}
int main() {
    cin >> a >> b;
    int f[3] = {a, b};
    mo(f);
    cout << f[1];
    return 0;
}

算法三十四、STL+dijkstra

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
const int N=405;
struct Edge {
    int v,w;
};
vector edge[N*N];
int n;
int dis[N*N];
bool vis[N*N];
struct cmp {
    bool operator()(int a,int b) {
        return dis[a]>dis[b];
    }
};
int Dijkstra(int start,int end)
{
    priority_queue,cmp> dijQue;
    memset(dis,-1,sizeof(dis));
    memset(vis,0,sizeof(vis));
    dijQue.push(start);
    dis[start]=0;
    while(!dijQue.empty()) {
        int u=dijQue.top();
        dijQue.pop();
        vis[u]=0;
        if(u==end)
            break;
        for(int i=0; idis[u]+edge[u][i].w) {
                dis[v]=dis[u]+edge[u][i].w;
                if(!vis[v]) {
                    vis[v]=true;
                    dijQue.push(v);
                }
            }
        }
    }
    return dis[end];
}
int main()
{
    int a,b;
    scanf("%d%d",&a,&b);
    Edge Qpush;

    Qpush.v=1;
    Qpush.w=a;
    edge[0].push_back(Qpush);

    Qpush.v=2;
    Qpush.w=b;
    edge[1].push_back(Qpush);

    printf("%d",Dijkstra(0,2));
    return 0;
}

算法三十五、数学表达式

#include 
using namespace std;
long long a, b;
int main() {
    cin >> a >> b;
    cout << a - b + (a * 2) - (a - b) - a + (a + (b - a)) << endl;
    return 0;
}

算法三十六、define大法

#include 
#define ___ int
#define $$$ main
#define _$_$_ return
#define _ cin
#define $ cout
#define __ using
#define $$ namespace
#define o_o std
__ $$ o_o;
___ $$$(){
    ___ _$o$_,$o_o$;
    _ >> _$o$_ >> $o_o$;
    $ << _$o$_ + $o_o$;
    _$_$_ 0;
}

算法三十七、压位高精度加法

奇怪的知识又增加了!

#include 
using namespace std;
const int mod = 100000000;
vector add(vector &A, vector &B) {
    vector C;
    int t = 0;
    for (int i = 0; i < A.size() || i < B.size(); i++) {
        if (i < A.size()) t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % mod);
        t /= mod;
    }
    if (t) C.push_back(t);
    return C;
}
int main() {
    string a, b; cin >> a >> b;
    vector A, B, C;
    for (int i = a.size() - 1, s = 0, j = 0, t = 1; i >= 0; i--) {
        s += (a[i] - '0') * t;
        j++; t *= 10;
        if (j == 8 || i == 0) A.push_back(s), s = 0, j = 0, t = 1;
    }
    for (int i = b.size() - 1, s = 0, j = 0, t = 1; i >= 0; i--) {
        s += (b[i] - '0') * t;
        j++; t *= 10;
        if (j == 8 || i == 0) B.push_back(s), s = 0, j = 0, t = 1;
    }
    C = add(A, B);
    cout << C.back();
    for (int i = C.size() - 2; i >= 0; i--) printf("%08d", C[i]);
    return 0;
}

算法三十八、加一大堆东东……

听说手动开O3优化……

虽然好像没优化多少

#pragma GCC diagnostic error "-std=c++11"
#pragma GCC target("avx")
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include 
using namespace std;
int main() {
    int a, b; scanf("%d%d", &a, &b);
    printf("%d", a + b);
    return 0;
}

算法三十九、暴力枚举优化版

和算法六区别“不大”但是时间优化了300ms……
时间:\(1567 ms\)
就是在 \(min(2 \times a, 2 \times b)\) 到 \(max(2 \times a, 2 \times b)\) 之间枚举,效率高了“亿”点点

#include 
using namespace std;
int main() {
    int a, b; scanf("%d%d", &a, &b);
    for (int i = min(2 * a, 2 * b);i <= max(2 * a, 2 * b); i++)
        if (a + b == i) {
            printf("%d", i); //注意要输出i,不然如果输出a+b循环就没意义了……
            return 0;
        }
}

算法四十、矩阵DP

就是和方格取数之类的这些同样的思维~

#include 
using namespace std;
int a[110][110], n = 2;
int main() {
    for (int i = 1;i <= n; i++)
        for (int j = 1;j <= n; j++) scanf("%d", &a[i][j]);
    for (int i = 1;i <= n; i++)
        for (int j = 1;j <= n; j++) 
            if (max(a[i - 1][j], a[i][j - 1]) > -1) a[i][j] += max(a[i - 1][j], a[i][j - 1]);
    printf("%d\n", a[n][n]);
    return 0;
}

算法四十一、拖延时间大法

yyds!永远的拖延时间!

3176 ms天哪!

#include 
//STL 通用算法
#include 
//STL 位集容器
#include 
//字符处理
#include 
//定义错误码
#include 
//浮点数处理
#include 
//对应各种运算符的宏
#include 
//定义各种数据类型最值的常量
#include 
//定义本地化函数
#include 
//定义数学函数
#include 
//复数类
#include 
//信号机制支持
#include 
//异常处理支持
#include 
//不定参数列表支持
#include 
//常用常量
#include 
//定义输入/输出函数
#include 
//定义杂项函数及内存分配函数
#include 
//字符串处理
#include 
//定义关于时间的函数
#include 
//宽字符处理及输入/输出
#include 
//宽字符分类
#include 
//STL 双端队列容器
#include 
//异常处理类
#include 
//文件输入/输出
#include 
//STL 定义运算函数(代替运算符)
#include 
//定义各种数据类型最值常量
#include 
//STL 线性列表容器
#include 
//本地化特定信息
#include 
//STL 映射容器
#include 
//STL通过分配器进行的内存分配
#include 
//动态内存分配
#include 
//STL常用的数字操作
#include 
//参数化输入/输出
#include 
//基本输入/输出支持
#include 
//输入/输出系统使用的前置声明
#include 
//数据流输入/输出
#include 
//基本输入流
#include 
//STL迭代器
#include 
//基本输出流
#include 
//STL 队列容器
#include 
//STL 集合容器
#include 
//基于字符串的流
#include 
//STL 堆栈容器
#include 
//标准异常类
#include 
//底层输入/输出支持
#include 
//字符串类
#include 
//运行期间类型信息
#include 
//STL 通用模板类
#include 
//对包含值的数组的操作
#include 
//STL 动态数组容器

//头文件拖延编译时间(虽然不能拖延运行时间,但能拖一点编译时间也很不错了hh) 
using namespace std;
int main(){
    int a; int b; //不用int a, b;,拖延运行时间
    cin >> a >> b; //cin拖延运行时间
    int ans = 1 * 10000 / 10 / 10 / 10 / 10 * 5 * 2 / 10 - 1; //ans表达式拖延编译和运行时间
    for (int i = 1;i <= a; i++) ans += 5, ans -= 4; //拖延时间 
    for (int i = 1;i <= b; i++) ans += 5, ans -= 4; //拖延时间 
    ans = ans - ans + ans + ans - ans; //表达式拖延时间
    cout << ans << endl; //cout和多输出回车拖延时间 
    return 0;
}

算法四十二、极限卡点

卡到了9970ms……

#include 
using namespace std;
int st = clock();
int main() {
    int a, b; scanf("%d%d", &a, &b);
    while (clock() - st < 995000) {}
    printf("%d", a + b);
    return 0;
}

算法四十三、快读快写

#include
using namespace std;
int read() {
    int s = 0, f = 1;
    char ch = getchar();
    while(!isdigit(ch)) {
        if(ch == '-') f = -1;
        ch = getchar();
    }
    while(isdigit(ch)) {  
        s = s * 10 + ch - '0';
        ch = getchar();
    }
    return s * f;
}
void write(int x) {
    if(x < 0) {
        putchar('-'); 
        x = -x;
    }
    if(x > 9) write(x / 10);
    putchar(x % 10 + '0');
    return;
}
int main() {
    int a, b; a = read(); b = read();
    write(a + b);
    return 0;
}

算法四十四、终极大杀器快读快写

#include
using namespace std;
static char buf[100000], *pa = buf, *pd = buf;
#define gc pa == pd && (pd = (pa = buf) + fread(buf, 1, 100000, stdin), pa == pd) ? EOF : *pa++
inline int read() {
    register int x(0); register char c(gc);
    while (c < '0' || c > '9') c = gc;
    while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = gc;
    return x;
}
void write(int x) {
    if(x < 0) {
        putchar('-'); 
        x = -x;
    }
    if(x > 9) write(x / 10);
    putchar(x % 10 + '0');
    return;
}
int main() {
    int a, b; a = read(); b = read();
    write(a + b);
    return 0;
}

算法四十五、sort大大大大大大大大大法

sort yyds!

#include 
using namespace std;
const int MAXN = 1e8 + 10;
int n, a[MAXN];
int main(){
    n = 2;
    for (int i = 1;i <= n; i++) scanf("%d", &a[i]);
    sort(a + 1, a + 1 + n);
    int ans = 0;
    for (int i = 1;i <= n; i++) ans += a[i]; printf("%d", ans);
    return 0;
}

算法四十六、冒泡排序

E……

#include 
using namespace std;
const int MAXN = 1e8 + 10;
int a[MAXN], n;
int main(){
    n = 2;
    for (int i = 1;i <= n; i++) scanf("%d", &a[i]);
    for (int i = n;i > 1; i--)
        for(int j = 1;j < i; j++)
            if(a[j] > a[j + 1]) swap(a[j], a[j + 1]);
    int ans = 0;
    for (int i = 1;i <= n; i++) ans += a[i]; printf("%d", ans);
    return 0;
}

算法四十七、选择排序

………………

#include 
using namespace std;
const int MAXN = 1e8 + 10;
int a[MAXN], n;
int main(){
    n = 2;
    for (int i = 1;i <= n; i++) scanf("%d", &a[i]);
    for (int i = 1;i < n; i++) {
        int w = i, Min = a[i];
        for (int j = i;j <= n; j++) if(Min > a[j]) w = j, Min = a[j]; //寻找

标签:std,return,int,namespace,问题,using,include,解法,105
From: https://www.cnblogs.com/BadBadBad/p/17996601/AaddB

相关文章

  • MySQL连接控制插件导致的连接数过多问题处理
    生产环境收到一波连接数告警,而该业务实际压力并不大。查看后发现有大量的waitinginconnection_controlplugin状态的连接等待。该等待连接数有一千多个。connection_control组件是由于前段时间的安全合规审查要求安装的。怕影响生产真实连接,将单个用户的登陆失败重试connectio......
  • [转]解决Visual Studio 调试时加载符号慢的问题 - zhaotianff - 博客园
    什么是调试符号编译程序时生成的一组特殊字符,并包含有关变量和函数在生成的二进制文件中的位置以及其他服务信息的信息。该数据集可用于逐步调试程序或检查第三方代码。调试符号可以添加到可执行文件或库中,但是大多数现代编译器将它们存储为单独的对象。例如,VisualStudio将调......
  • 内网与外网使用的问题
    在很多网络环境中,为了安全起见,不允许内网、外网同时使用。但很多时候(比如说远程的时候)又需要同时使用外网和内网,下面介绍一下外网、内网同时使用的操作方法。环境:1、电脑的本地网卡设置成内网的IP及网关,IP为192.168.14.2/24,网关为192.168.14.1,OLT的IP段为10.159.64.0/24。2、电......
  • java8线上GC问题排查
    问题线上长时间fullGc项目输出了对应的gc日志,启动参数里增加了对应启动参数-verbose:gc-Xloggc:/logs/java_gc.log-XX:+PrintGCDateStamps-XX:+PrintGCApplicationStoppedTime-XX:+PrintGCApplicationConcurrentTime-XX:+PrintHeapAtGC-XX:HeapDumpPath=/logs/java_he......
  • 不能坐视了!Oracle数据库varchar2字段扩容,每月总有那么一两次。----- 优秀的程序应总是
    Oracle数据库varchar2字段扩容-始末今天,有后端小伙伴提了个sql工单。对我司服务商系统Oracle数据库的一个mer_name字段扩容。altertableT_MER_SETTLEmodifymer_nameVARCHAR2(100)审批前,我查了一下当前这个mer_name字段的长度是VARCHAR2(64)。基于对我司客户名称的长度......
  • gitlab-runner helm 安装问题记录
      首先说说安装步骤1、安装版本gitlab-runner-0.36.1.tgz  cat./gitlab-runner/values.yaml|grep-v"#"|sed-e'/^$/d'imagePullPolicy:IfNotPresentgitlabUrl:http://101.43.196.155:32080/runnerRegistrationToken:"Woq_Drxy-SSy1kQzJBZT&......
  • 有关UE5在VisualStudio升级后产生C++无法编译的问题及处理方案
    哈喽大家好,我是咕噜美乐蒂,很高兴又见面啦!最近,许多使用UE5的游戏开发者遇到了一个问题:在VisualStudio升级后,他们的C++代码无法编译。这个问题可能是由于UE5工程和VS之间的版本不兼容导致的。本文将深入探讨这个问题的原因以及如何解决它。一、问题的产生原因UE5是一款基于C++的游戏......
  • 如何使用保留可探测字段参数的方法解决视频监控管理平台EasyCVR无法启动的问题
    有用户反馈,在使用EasyCVR时出现启动失败,服务无法使用的情况。收到用户反馈后,技术人员立即开展解决,以下为解决步骤:注:此解决方法为保留hardware_version可被探测的字段参数。1、首先查看报错日志:2、由上图可见,报错为LocalMachineCheckError!本地机器检查错误!随后检查配置文件,是否因......
  • 如何使用保留可探测字段参数的方法解决视频监控管理平台EasyCVR无法启动的问题
    安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安防视频监控的能力,也具备接入AI智能分析的......
  • Android Studio如何解决Connect time out问题
    Hello各位同学们好,我是咕噜铁蛋,使用AndroidStudio是我们日常开发工作中不可缺少的工具。然而,在使用AndroidStudio进行开发时,有些时候会遇到连接超时(Connecttimeout)的问题,这会影响我们的开发进程,甚至可能导致应用无法正常运行。那么,如何解决这个问题呢?今天就由铁蛋来为大家介绍......