首页 > 其他分享 >一种轻量分表方案-MyBatis拦截器分表实践

一种轻量分表方案-MyBatis拦截器分表实践

时间:2024-01-26 10:48:36浏览次数:24  
标签:拦截器 String 数据 private org 分表 import 轻量

背景

部门内有一些亿级别核心业务表增速非常快,增量日均100W,但线上业务只依赖近一周的数据。随着数据量的迅速增长,慢SQL频发,数据库性能下降,系统稳定性受到严重影响。本篇文章,将分享如何使用MyBatis拦截器低成本的提升数据库稳定性。

 

业界常见方案

针对冷数据多的大表,常用的策略有以2种:

1. 删除/归档旧数据。

2. 分表。

 

归档/删除旧数据

定期将冷数据移动到归档表或者冷存储中,或定期对表进行删除,以减少表的大小。此策略逻辑简单,只需要编写一个JOB定期执行SQL删除数据。我们开始也是用这种方案,但此方案也有一些副作用:

1.数据删除会影响数据库性能,引发慢sql,多张表并行删除,数据库压力会更大。 2.频繁删除数据,会产生数据库碎片,影响数据库性能,引发慢SQL。

综上,此方案有一定风险,为了规避这种风险,我们决定采用另一种方案:分表。

 

分表

我们决定按日期对表进行横向拆分,实现让系统每周生成一张周期表,表内只存近一周的数据,规避单表过大带来的风险。

 

分表方案选型

经调研,考虑2种分表方案:Sharding-JDBC、利用Mybatis自带的拦截器特性。

经过对比后,决定采用Mybatis拦截器来实现分表,原因如下:

1.JAVA生态中很常用的分表框架是Sharding-JDBC,虽然功能强大,但需要一定的接入成本,并且很多功能暂时用不上。 2.系统本身已经在使用Mybatis了,只需要添加一个mybaits拦截器,把SQL表名替换为新的周期表就可以了,没有接入新框架的成本,开发成本也不高。

 

 

简易架构图

 

分表具体实现代码

分表配置对象

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

import java.util.Date;

@Data
@AllArgsConstructor
@NoArgsConstructor
public class ShardingProperty {
    // 分表周期天数,配置7,就是一周一分
    private Integer days;
    // 分表开始日期,需要用这个日期计算周期表名
    private Date beginDate;
    // 需要分表的表名
    private String tableName;
}


分表配置类

import java.util.concurrent.ConcurrentHashMap;

public class ShardingPropertyConfig {

    public static final ConcurrentHashMap<String, ShardingProperty> SHARDING_TABLE ();

    static {
        ShardingProperty orderInfoShardingConfig = new ShardingProperty(15, DateUtils.string2Date("20231117"), "order_info");
        ShardingProperty userInfoShardingConfig = new ShardingProperty(7, DateUtils.string2Date("20231117"), "user_info");

        SHARDING_TABLE.put(orderInfoShardingConfig.getTableName(), orderInfoShardingConfig);
        SHARDING_TABLE.put(userInfoShardingConfig.getTableName(), userInfoShardingConfig);
    }
}

拦截器

import lombok.extern.slf4j.Slf4j;
import o2o.aspect.platform.function.template.service.TemplateMatchService;
import org.apache.commons.lang3.StringUtils;
import org.apache.ibatis.executor.statement.StatementHandler;
import org.apache.ibatis.mapping.BoundSql;
import org.apache.ibatis.mapping.MappedStatement;
import org.apache.ibatis.plugin.*;
import org.apache.ibatis.reflection.DefaultReflectorFactory;
import org.apache.ibatis.reflection.MetaObject;
import org.apache.ibatis.reflection.ReflectorFactory;
import org.apache.ibatis.reflection.factory.DefaultObjectFactory;
import org.apache.ibatis.reflection.factory.ObjectFactory;
import org.apache.ibatis.reflection.wrapper.DefaultObjectWrapperFactory;
import org.apache.ibatis.reflection.wrapper.ObjectWrapperFactory;
import org.springframework.stereotype.Component;

import java.sql.Connection;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.Date;
import java.util.Properties;

@Slf4j
@Component
@Intercepts({@Signature(type = StatementHandler.class, method = "prepare", args = {Connection.class, Integer.class})})
public class ShardingTableInterceptor implements Interceptor {
    private static final ObjectFactory DEFAULT_OBJECT_FACTORY = new DefaultObjectFactory();
    private static final ObjectWrapperFactory DEFAULT_OBJECT_WRAPPER_FACTORY = new DefaultObjectWrapperFactory();
    private static final ReflectorFactory DEFAULT_REFLECTOR_FACTORY = new DefaultReflectorFactory();
    private static final String MAPPED_STATEMENT = "delegate.mappedStatement";
    private static final String BOUND_SQL = "delegate.boundSql";
    private static final String ORIGIN_BOUND_SQL = "delegate.boundSql.sql";
    private static final DateTimeFormatter FORMATTER = DateTimeFormatter.ofPattern("yyyyMMdd");
    private static final String SHARDING_MAPPER = "com.jd.o2o.inviter.promote.mapper.ShardingMapper";

    private ConfigUtils configUtils = SpringContextHolder.getBean(ConfigUtils.class);

    @Override
    public Object intercept(Invocation invocation) throws Throwable {
        boolean shardingSwitch = configUtils.getBool("sharding_switch", false);
        // 没开启分表 直接返回老数据
        if (!shardingSwitch) {
            return invocation.proceed();
        }

        StatementHandler statementHandler = (StatementHandler) invocation.getTarget();
        MetaObject metaStatementHandler = MetaObject.forObject(statementHandler, DEFAULT_OBJECT_FACTORY, DEFAULT_OBJECT_WRAPPER_FACTORY, DEFAULT_REFLECTOR_FACTORY);
        MappedStatement mappedStatement = (MappedStatement) metaStatementHandler.getValue(MAPPED_STATEMENT);
        BoundSql boundSql = (BoundSql) metaStatementHandler.getValue(BOUND_SQL);
        String originSql = (String) metaStatementHandler.getValue(ORIGIN_BOUND_SQL);
        if (StringUtils.isBlank(originSql)) {
            return invocation.proceed();
        }

        // 获取表名
        String tableName = TemplateMatchService.matchTableName(boundSql.getSql().trim());
        ShardingProperty shardingProperty = ShardingPropertyConfig.SHARDING_TABLE.get(tableName);
        if (shardingProperty == null) {
            return invocation.proceed();
        }

        // 新表
        String shardingTable = getCurrentShardingTable(shardingProperty, new Date());
        String rebuildSql = boundSql.getSql().replace(shardingProperty.getTableName(), shardingTable);
        metaStatementHandler.setValue(ORIGIN_BOUND_SQL, rebuildSql);
        if (log.isDebugEnabled()) {
            log.info("rebuildSQL -> {}", rebuildSql);
        }

        return invocation.proceed();
    }

    @Override
    public Object plugin(Object target) {
        if (target instanceof StatementHandler) {
            return Plugin.wrap(target, this);
        }
        return target;
    }

    @Override
    public void setProperties(Properties properties) {}

    public static String getCurrentShardingTable(ShardingProperty shardingProperty, Date createTime) {
        String tableName = shardingProperty.getTableName();
        Integer days = shardingProperty.getDays();
        Date beginDate = shardingProperty.getBeginDate();

        Date date;
        if (createTime == null) {
            date = new Date();
        } else {
            date = createTime;
        }
        if (date.before(beginDate)) {
            return null;
        }
        LocalDateTime targetDate = SimpleDateFormatUtils.convertDateToLocalDateTime(date);
        LocalDateTime startDate = SimpleDateFormatUtils.convertDateToLocalDateTime(beginDate);
        LocalDateTime intervalStartDate = DateIntervalChecker.getIntervalStartDate(targetDate, startDate, days);
        LocalDateTime intervalEndDate = intervalStartDate.plusDays(days - 1);
        return tableName + "_" + intervalStartDate.format(FORMATTER) + "_" + intervalEndDate.format(FORMATTER);
    }
}

临界点数据不连续问题

分表方案有1个难点需要解决:周期临界点数据不连续。举例:假设要对operate_log(操作日志表)大表进行横向分表,每周一张表,分表明细可看下面表格。

第一周(operate_log_20240107_20240108) 第二周(operate_log_20240108_20240114) 第三周(operate_log_20240115_20240121)
1月1号 ~ 1月7号的数据 1月8号 ~ 1月14号的数据 1月15号 ~ 1月21号的数据

1月8号就是分表临界点,8号需要切换到第二周的表,但8号0点刚切换的时候,表内没有任何数据,这时如果业务需要查近一周的操作日志是查不到的,这样就会引发线上问题。

我决定采用数据冗余的方式来解决这个痛点。每个周期表都冗余一份上个周期的数据,用双倍数据量实现数据滑动的效果,效果见下面表格。

第一周(operate_log_20240107_20240108) 第二周(operate_log_20240108_20240114) 第三周(operate_log_20240115_20240121)
12月25号 ~ 12月31号的数据 1月1号 ~ 1月7号的数据 1月8号 ~ 1月14号的数据
1月1号 ~ 1月7号的数据 1月8号 ~ 1月14号的数据 1月15号 ~ 1月21号的数据

注:表格内第一行数据就是冗余的上个周期表的数据。

思路有了,接下来就要考虑怎么实现双写(数据冗余到下个周期表),有2种方案:

1.在SQL执行完成返回结果前添加逻辑(可以用AspectJ 或 mybatis拦截器),如果SQL内的表名是当前周期表,就把表名替换为下个周期表,然后再次执行SQL。此方案对业务影响大,相当于串行执行了2次SQL,有性能损耗。 2.监听增量binlog,京东内部有现成的数据订阅中间件DRC,读者也可以使用cannal等开源中间件来代替DRC,原理大同小异,此方案对业务无影响。

方案对比后,选择了对业务性能损耗小的方案二。

 

监听binlog并双写流程图

 

 

监听binlog数据双写注意点

1.提前上线监听程序,提前把老表数据同步到新的周期表。分表前只监听老表binlog就可以,分表前只需要把老表数据同步到新表。 2.切换到新表的临界点,为了避免丢失积压的老表binlog,需要同时处理新表binlog和老表binlog,这样会出现死循环同步的问题,因为老表需要同步新表,新表又需要双写老表。为了打破循环,需要先把双写老表消费堵上让消息暂时积压,切换新表成功后,再打开双写消费。

 

监听binlog数据双写代码

注:下面代码不能直接用,只提供基本思路

/**
 * 监听binlog ,分表双写,解决数据临界问题
*/
@Slf4j
@Component
public class BinLogConsumer implements MessageListener {
    
    private MessageDeserialize deserialize = new JMQMessageDeserialize();

    private static final String TABLE_PLACEHOLDER = "%TABLE%";

    @Value("${mq.doubleWriteTopic.topic}")
    private String doubleWriteTopic;

    @Autowired
    private JmqProducerService jmqProducerService;


    @Override
    public void onMessage(List<Message> messages) throws Exception {
        if (messages == null || messages.isEmpty()) {
            return;
        }
        List<EntryMessage> entryMessages = deserialize.deserialize(messages);
        for (EntryMessage entryMessage : entryMessages) {
            try {
                syncData(entryMessage);
            } catch (Exception e) {
                log.error("sharding sync data error", e);
                throw e;
            }
        }
    }

    private void syncData(EntryMessage entryMessage) throws JMQException {
        // 根据binlog内的表名,获取需要同步的表
        // 3种情况:
        // 1、老表:需要同步当前周期表,和下个周期表。
        // 2、当前周期表:需要同步下个周期表,和老表。
        // 3、下个周期表:不需要同步。
        List<String> syncTables = getSyncTables(entryMessage.tableName, entryMessage.createTime);
        
        if (CollectionUtils.isEmpty(syncTables)) {
            log.info("table {} is not need sync", tableName);
            return;
        }

        if (entryMessage.getHeader().getEventType() == WaveEntry.EventType.INSERT) {
            String insertTableSqlTemplate = parseSqlForInsert(rowData);
            for (String syncTable : syncTables) {
                String insertSql = insertTableSqlTemplate.replaceAll(TABLE_PLACEHOLDER, syncTable);
                // 双写老表发Q,为了避免出现同步死循环问题
                if (ShardingPropertyConfig.SHARDING_TABLE.containsKey(syncTable)) {
                    Long primaryKey = getPrimaryKey(rowData.getAfterColumnsList());
                    sendDoubleWriteMsg(insertSql, primaryKey);
                    continue;
                }
                mysqlConnection.executeSql(insertSql);
            }
            continue;
        }
    }


数据对比

为了保证新表和老表数据一致,需要编写对比程序,在上线前进行数据对比,保证binlog同步无问题。

具体实现代码不做展示,思路:新表查询一定量级数据,老表查询相同量级数据,都转换成JSON,equals对比。

作者:京东零售 张均杰

来源:京东云开发者社区 转载请注明来源

标签:拦截器,String,数据,private,org,分表,import,轻量
From: https://www.cnblogs.com/Jcloud/p/17988807

相关文章

  • go-carbon v2.3.7 发布,轻量级、语义化、对开发者友好的 golang 时间处理库
    carbon是一个轻量级、语义化、对开发者友好的golang时间处理库,支持链式调用。目前已被awesome-go收录,如果您觉得不错,请给个star吧github.com/golang-module/carbongitee.com/golang-module/carbon安装使用Golang版本大于等于1.16//使用github库goget-ugithu......
  • go-carbon v2.3.6 发布,轻量级、语义化、对开发者友好的 golang 时间处理库
    carbon是一个轻量级、语义化、对开发者友好的golang时间处理库,支持链式调用。目前已被awesome-go收录,如果您觉得不错,请给个star吧github.com/golang-module/carbongitee.com/golang-module/carbon安装使用Golang版本大于等于1.16//使用github库goget-ugithu......
  • 定向减免!函数计算让轻量 ETL 数据加工更简单,更省钱
    作者:澈尔、墨飏业内较为常见的高频短时ETL数据加工场景,即频率高时延短,一般均可归类为调用密集型场景。此场景有着高并发、海量调用的特性,往往会产生高额的计算费用,而业内推荐方案一般为攒批处理,业务实时性会有一定的影响。基于此痛点,函数计算FC推出定向减免方案,让ETL数据加......
  • Unity下实现跨平台的RTMP推流|轻量级RTSP服务|RTMP播放|RTSP播放低延迟解决方案
    技术背景 2018年,我们开始在原生RTSP|RTMP直播播放器的基础上,对接了Unity环境下的低延迟播放,毫秒级延迟,发布后,就得到了业内一致的认可。然后我们覆盖了Windows、Android、iOS、Linux的RTMP推送、轻量级RTSP服务和RTSP|RTMP播放。目前看,Unity环境下,我们在行业内的延迟几乎是最低的(当......
  • 面试官:分库分表后如何生成全局ID?
    分库分表后就不能使用自增ID来作为表的主键了,因为数据库自增ID只适用于单机环境,但如果是分布式环境,是将数据库进行分库、分表或数据库分片等操作时,那么数据库自增ID就会生成重复ID,从而导致业务查询上的问题。所以此时,可以使用UUID或雪花ID来作为全局主键ID。1.UUID作为......
  • 利用aop、拦截器HandlerInterceptor来实现接口限流,日志收集
    前言:aop是面向切面编程,通过预编译方式和运行期间动态代理实现程序功能的统一维护的一种技术。拦截器是web请求中一个请求周期中的一环就实现接口限流这个需求来说,用aop和HandlerInterceptor都可以来实现,就是在调用接口之前做一些约束而已。aop+自定义注解+Semaphore实现接口限流自......
  • 基于自注意力机制的轻量级人体姿态估计(Lightweight Human Pose Estimation Based on
    写在前面本文是一篇于2023年3月21日发表在2023InternationalConferenceonBigData,EnvironmentalIndustryandMaterialsScience(ICBDEIMS2023)的一篇会议论文。论文主要聚焦于解决单签人体姿态估计网络模型中普遍存在的参数多、计算复杂度高、检测时间长的问题,文章采用......
  • 轻量化CNN网络 - ShuffleNet
    1.ShuffleNetV1论文:ShuffleNet:AnExtremelyEfficientConvolutionalNeuralNetworkforMobileDevices网址:https://arxiv.org/abs/1707.01083提出了``ChannelShuffle`的思想,在ShuffleUnit中全是GConv和DWConv。GConv虽然能够减少参数与计算量,但GConv中不同组之间信......
  • 为什么要分库分表?
    https://www.bilibili.com/video/BV1fV4y1M7eD/?spm_id_from=333.788.recommend_more_video.0&vd_source=46d50b5d646b50dcb2a208d3946b1598https://www.bilibili.com/video/BV1ae4y1E7HH/?spm_id_from=333.999.0.0&vd_source=46d50b5d646b50dcb2a208d3946b1598......
  • Android平台Unity下如何通过WebCamTexture采集摄像头数据并推送至RTMP服务器或轻量级R
    技术背景我们在对接Unity下推送模块的时候,遇到这样的技术诉求,开发者希望在Android的Unity场景下,获取到前后摄像头的数据,并投递到RTMP服务器,实现低延迟的数据采集处理。在此之前,我们已经有了非常成熟的RTMP推送模块,也实现了Android平台Unity环境下的Camera场景采集,针对这个技术需求,......