CF741E Arpa’s abnormal DNA and Mehrdad’s deep interest
记 \(R_{i}\) 表示把 \(T\) 插入在 \(S\) 的第 \(i\) 位后组成的字符串。有 \(q\) 组询问,给定 \((x,y,l,r)\),求 \(\min_{i} R_{i},({i\in[l,r],i\%k\in[x,y]})\)。
一个暴力的想法是先把 \(R_{i}\) 的排名求出来,这显然可以 SA 或者 二分 + Hash 求 lcp。考虑根号分治:对于 \(k>\sqrt n\),显然不会有超过 \(\sqrt n\) 个连续区间,暴力查 ST 表即可。对于 \(k\le \sqrt n\),离线处理,对于每个 \(k\),我们把 \(\%k\) 相同的点拿出来,发现对于一个询问仍然是区间查询,且一个询问只会被拆分成 \(k\) 个。仍然可以暴力建立 ST 表,因为数组大小之和是调和级数。询问的个数复杂度是 \(O(n\sqrt n)\)。
故总的复杂度为 \(O(n\sqrt n+n\log^2 n+n\lg\log n)\)。实现时需注意常数。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+5, mo=998244353, B=335;
int n,m,q;
char s[maxn], t[maxn];
ll f[maxn], g[maxn], pw[maxn];
int sa[maxn], rk[maxn], lg[maxn], w[maxn][20];
int calc(int x,int len) {
if(len<=x) return f[len];
if(len<=x+m) return (f[x]*pw[len-x]%mo+g[len-x])%mo;
return ((f[x]*pw[m]%mo+g[m])%mo*pw[len-x-m]%mo+f[len-m]-f[x]*pw[len-x-m]%mo+mo)%mo;
}
bool cmp(int x,int y) {
int l=1, r=n+m, pos=0;
while(l<=r) {
int mid=l+r>>1;
if(calc(x,mid)==calc(y,mid)) pos=mid, l=mid+1;
else r=mid-1;
}
if(pos==n+m) return x<y;
++pos;
char c1,c2;
if(pos<=x) c1=s[pos];
else if(pos<=x+m) c1=t[pos-x];
else c1=s[pos-m];
if(pos<=y) c2=s[pos];
else if(pos<=y+m) c2=t[pos-y];
else c2=s[pos-m];
return c1<c2;
}
struct node {
int x,y,l,r,id;
};
vector<node> e[B];
int ans[maxn];
int ask(int l,int r) {
if(l>r) return n+1;
int k=lg[r-l+1];
return min(w[l][k],w[r-(1<<k)+1][k]);
}
int ww[maxn][20];
int ask2(int l,int r) {
if(l>r) return n+1;
int k=lg[r-l+1];
return min(ww[l][k],ww[r-(1<<k)+1][k]);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
cin>>s+1>>t+1>>q;
n=strlen(s+1), m=strlen(t+1);
pw[0]=1; lg[1]=0;
for(int i=2;i<=n+1;i++) lg[i]=lg[i>>1]+1;
for(int i=1;i<=n+m;i++) pw[i]=pw[i-1]*131%mo;
for(int i=1;i<=n;i++) f[i]=(f[i-1]*131+s[i]-'a')%mo;
for(int i=1;i<=m;i++) g[i]=(g[i-1]*131+t[i]-'a')%mo;
for(int i=0;i<=n;i++) sa[i]=i;
stable_sort(sa,sa+n+1,cmp);
/*
for(int i=0;i<=n;i++) {
cout<<sa[i]<<'\n';
for(int j=1;j<=sa[i];j++) cout<<s[j];
for(int j=1;j<=m;j++) cout<<t[j];
for(int j=sa[i]+1;j<=n;j++) cout<<s[j];
cout<<'\n';
}
*/
for(int i=0;i<=n;i++) rk[sa[i]]=i;
// for(int i=0;i<=n;i++) w[i][0]=rk[i];
for(int j=1;(1<<j)<=n+1;j++) {
for(int i=0;i+(1<<j)-1<=n;i++) {
w[i][j]=min(w[i][j-1],w[i+(1<<j-1)][j-1]);
}
}
sa[n+1]=-1;
for(int i=1;i<=q;i++) ans[i]=n+1;
for(int i=1;i<=q;i++) {
int l,r,k,x,y; cin>>l>>r>>k>>x>>y;
if(k>=B) {
int ml=l%k, res=n+1;
if(ml<x) l+=x-ml;
else if(ml>y) l+=(x+k-ml);
else {
res=min(ask(l,min(l+y-ml,r)),res);
l+=(x+k-ml);
}
int mr=r%k;
if(mr>y) r-=mr-y;
else if(mr<x) r-=(mr+k-y);
else {
res=min(ask(max(l,r-(mr-x)),r),res);
r-=(mr+k-y);
}
while(l<=r) {
res=min(res,ask(l,l+y-x));
l+=k;
}
ans[i]=res;
}else {
e[k].push_back((node){x,y,l,r,i});
}
}
for(int k=1;k<B;k++) {
for(int v=0;v<k;v++) {
int cnt=0;
for(int d=v;d<=n;d+=k) ww[++cnt][0]=rk[d];
for(int j=1;(1<<j)<=cnt;j++) {
for(int i=1;i+(1<<j)-1<=cnt;i++) {
ww[i][j]=min(ww[i][j-1],ww[i+(1<<j-1)][j-1]);
}
}
for(auto p:e[k]) {
if(p.x>v||p.y<v) continue;
int l=p.l, r=p.r;
l=l+(v-(l%k)+k)%k;
r=r-((r%k)-v+k)%k;
l=(l-v)/k+1, r=(r-v)/k+1;
ans[p.id]=min(ans[p.id],ask2(l,r));
}
}
}
for(int i=1;i<=q;i++) cout<<sa[ans[i]]<<' '; cout<<'\n';
return 0;
}
标签:lg,DNA,min,int,题解,Mehrdad,mid,maxn,return
From: https://www.cnblogs.com/sssooommm/p/17972796