首页 > 其他分享 >常见的几种数据同步方案

常见的几种数据同步方案

时间:2024-01-10 17:37:55浏览次数:31  
标签:触发器 同步 tb 数据库 常见 几种 数据 order

常见的几种数据同步方案

微微一笑 码易有道 2024-01-07 16:25 发表于北京

关键词:数据同步、数据异构、数据迁移

引言

  当今时代,数据是企业运营的核心。随着业务的扩张和用户规模的增加,确保不同部分之间的数据一致性、实时性和可靠性变得尤为关键。本文将探讨几种常见的数据同步方案,涵盖了数据库主从同步、数据迁移同步和数据实时同步。通过深入了解各种方案的特点、优势和局限性,我们可以更好地选择和定制适合特定业务场景的数据同步策略,为构建高效、稳定、可扩展的系统奠定基础。

主要内容如下:

方案一、数据库主从复制

数据库主从复制是一种常见的数据同步方案,其中主数据库将其变更操作传播到一个或多个从数据库。IMG_256

IMG_257

MySQL数据库主从复制的配置步骤:

  1. 确保主从数据库版本一致:确保主数据库和从数据库使用相同的MySQL版本,以避免兼容性问题。
  2. 配置主数据库:在主数据库上进行配置,打开MySQL配置文件(通常是my.cnf或my.ini),参数设置:

#设置主服务器的唯一标识
server-id = 1
#启用二进制日志,记录主数据库上的所有更改
log_bin = /var/log/mysql/mysql-bin.log
#指定要复制的数据库
binlog_do_db = your_database_name

  1. 创建复制用户: 在主数据库上创建一个用于复制的用户,确保该用户具有适当的权限:

#replication_user和replication_password替换成自己的用户名和密码
  
#创建用于复制的用户
create user 'replication_user'@'%' identified by 'replication_password';

#复制授权
grant replication slave on *.* to 'replication_user'@'%';

#刷新权更改应用
flush privileges;

  1. 获取主数据库的二进制日志位置: 在主数据库上执行以下命令,记录输出的File和Position,配置从数据库时用到:

SHOW MASTER STATUS;
  
mysql> show master status;
+------------------+----------+--------------+------------------+-------------------+
| File             | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_Set |
+------------------+----------+--------------+------------------+-------------------+
| mysql-bin.000001 |     6470 | your_name    |                  |                   |
+------------------+----------+--------------+------------------+-------------------+
1 row in set (0.00 sec)

  1. 配置从数据库:在从数据库上进行配置,打开MySQL配置文件,参数设置:

server-id = 2

保存配置并重启从数据库。

  1. 连接从数据库到主数据库: 在从数据库上执行以下命令,替换master_host、master_user、master_password、master_log_file和master_log_pos为主数据库的信息:

#配置从数据库连接到主数据库
change master to
master_host = 'master_host',
master_user = 'replication_user',
master_password = 'replication_password',

#从SHOW MASTER STATUS;中获取的File值。
master_log_file = 'master_log_file',
#从SHOW MASTER STATUS;中获取的Position值
master_log_pos = master_log_pos;

  1. 启动从数据库的复制进程:

START SLAVE;

  1. 验证复制状态: 在主数据库上进行一些数据更改,并在从数据库上执行以下命令:

SHOW SLAVE STATUS\G

  总之,数据库主从复制方案,适用于读多写少的场景,读请求可以分担到从数据库,减轻主数据库负载。优势: 提高读取性能,分担主数据库负载,提供容灾和备份机制。局限性: 存在复制延迟,可能导致从数据库数据不一致;主库单点故障可能影响整个系统;不适用于写入密集型应用。

方案二、ETL工具数据迁移

  ETL(Extract, Transform, Load)工具广泛用于不同数据存储系统之间的数据迁移、整合和同步,特别是在大规模数据迁移、数据仓库建设、数据清洗和转换等方面。常见的ETL工具有:

名称

主要特点

适用场景

Apache NiFi

提供直观的可视化界面,支持实时数据流,强调易用性和可管理性

适用于构建实时数据流程,易用界面,强大的管理功能

Talend Open Studio

强大的图形化界面和丰富的连接器,支持多种数据源和目标,复杂的转换和清洗功能

适用于复杂数据转换,多源多目标数据同步,大规模数据迁移

Apache Camel

基于企业集成模式,支持多种协议和数据格式

适用于构建灵活的数据集成解决方案,企业级数据集成和消息路由

Kettle (Pentaho)

提供图形界面,支持强大的数据操作和转换功能,整合Pentaho平台的其他组件

适用于全面数据整合,业务智能和数据分析

选择建议:

  • 如果注重实时数据流程和易用性,Apache NiFi 是一个好的选择。
  • 对于复杂数据转换和大规模迁移,Talend Open Studio 提供了丰富的功能和广泛的连接器。
  • 如果已经使用 Apache Camel 的其他组件,或需要高度灵活性和可定制性,可以考虑使用 Apache Camel。
  • 对于全面数据整合和业务智能,Pentaho Data Integration 可能是一个全面的解决方案。

具体使用依赖于企业的具体需求、技术栈和团队的技能水平。

这里我们以Apache NiFi为例简单探究其使用,说明数据迁移的过程即可。

官网地址:https://nifi.apache.org/

下载地址:https://archive.apache.org/dist/nifi/

安装和部署读者自行查阅。这里根据ETL功能说明下主要执行流程。

单机架构:IMG_258

Web Server Web服务器的作用是托管NiFi的基于HTTP的命令和控制API。

Flow Controller 流程控制器是整个操作的核心。它为扩展提供线程运行,并管理扩展何时接收到执行资源的调度。

Extensions 有各种类型的NiFi扩展,这些在其他文档中有描述。这里的关键点是扩展在JVM中运行和执行。

FlowFile Repository FlowFile存储库是NiFi用于跟踪当前在流中活动的给定FlowFile状态的地方。存储库的实现是可插拔的。

Content Repository 内容存储库是给定FlowFile的实际内容字节所在的地方。

Provenance Repository Provenance存储库是存储所有Provenance事件数据的地方。

工具定位及使用流程:IMG_259

这边就以从mysql查询数据在写入到mysql为例做一个简单流程进行演示:

IMG_260

详细步骤可参考(文章出处):https://blog.csdn.net/be_racle/article/details/134223354

IMG_261

  感兴趣的可以深究,这里只想说明:对大数据量处理,包括数据提取,数据加载,增量数据同步,可以借助这些工具,ETL工具提供了一些可视化的组件+配置具体的链接类型。可以省去很多人工的成本,也间接的保证了数据一致性的问题。是很好的数据处理工具。但是因为引入新的组件,在多数据源的情况下,不可避免的带来系统的复杂性。

方案三、触发器增量数据同步

如上,比如:例子中的触发器是在tb_order表中插入新数据时触发的,将新数据同步到tb_order_his表中(读者可以根据需要调整触发器的触发时机和逻辑)

现状:tb_order 共有3条记录

IMG_262

tb_order_his 0条记录

IMG_263

触发器逻辑脚本:

# 创建触发器
DELIMITER //
CREATE TRIGGER sync_order_to_history
AFTER INSERT ON tb_order
FOR EACH ROW
BEGIN
    INSERT INTO tb_order_his (
        order_id, customer_id, order_date, product_id, quantity, 
        total_price, status, shipping_address, payment_method, 
        coupon_code, create_time, update_time
    )
    VALUES (
        NEW.order_id, NEW.customer_id, NEW.order_date, NEW.product_id, NEW.quantity, 
        NEW.total_price, NEW.status, NEW.shipping_address, NEW.payment_method, 
        NEW.coupon_code, NEW.create_time, NEW.update_time
    );
END;
//
DELIMITER ;

这个触发器是在tb_order表发生插入操作之后触发的,会将新插入的数据复制到tb_order_his表中。请注意,我假设 tb_order_his 表的结构和 tb_order 表相同。

测试触发器的工作:

# 向tb_order插入数据
INSERT INTO tb_order VALUES (4, 4, '2024-01-15 12:00:00', 104, 4, 150.25, '待支付', '567 Elm St, County', 'Credit Card', 'DISCOUNT_15', '2024-01-15 12:00:00', '2024-01-15 12:00:00');

# 查询tb_order_his,确保数据同步成功
SELECT * FROM tb_order_his;

查看结果:同步成功:

tb_order

IMG_264

tb_order_his

IMG_265

触发器同步的优点:

实时性: 触发器可以实现实时数据同步,当触发事件发生时,同步操作会立即执行,确保目标表中的数据与源表保持同步。

简化操作: 触发器能够在数据库层面自动执行同步操作,无需在应用程序中编写额外的同步逻辑,简化了开发和维护工作。确保源表和目标表之间的数据一致性。

触发器同步的缺点:

性能影响: 触发器的执行会引入额外的性能开销,特别是在大规模数据操作时。频繁触发的触发器可能导致数据库性能下降。

复杂性: 当触发器逻辑复杂或有多个触发器时,可能难以追踪和调试触发器的行为,特别是在维护时。

并发控制: 在高并发环境中,触发器可能引发并发控制的问题,需要谨慎处理以确保数据一致性。

方案四、手工脚本同步(朴实无华)

  这种就是常见的SQL脚本,常用于数据割接,错误数据修改,包括配置数据,业务字段,运维手工调整异常数据等。比较简单,只是为了文章结构完整说明一下。举个简单的例子吧:

# insert into tb_target select * from tb_source
INSERT INTO tb_order_his (
    order_id, customer_id, order_date, product_id, quantity,
    total_price, status, shipping_address, payment_method,
    coupon_code, create_time, update_time
)
SELECT
    order_id, customer_id, order_date, product_id, quantity,
    total_price, status, shipping_address, payment_method,
    coupon_code, create_time, update_time
FROM tb_order;

比较简单,没什么好总结的。

方案五、实时数据同步方案(使用消息队列)

  这种方案主要是:将 MySQL 数据变更事件捕获并通过消息队列传递给下游数据源。比如:从Mysql同步数据到ClickHouse,一种常见的方法是使用Debezium作为MySQL CDC(Change Data Capture)工具,结合Kafka作为消息队列。大致的步骤:

  1. 配置 MySQL 数据库连接信息:

# MySQL 连接配置
database.hostname=mysql-host
database.port=3306
database.user=mysql-user
database.password=mysql-password

# Debezium 配置
connector.class=io.debezium.connector.mysql.MySqlConnector
tasks.max=1
database.server.id=1
database.server.name=my-app-connector
database.whitelist=mydatabase

  1. 启动 Debezium 连接器:

通过命令行或配置文件启动 Debezium 连接器,例如:

debezium-connector-mysql my-connector.properties

  1. 创建 Kafka-topic:

Debezium将变更事件发送到 Kafka 主题,确保 Kafka 主题已经创建:

kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic my-topic

  1. Java 伪代码示例 - 消费 Kafka 主题并将数据写入 ClickHouse:

import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class ClickHouseDataConsumer {

    private static final String KAFKA_BOOTSTRAP_SERVERS = "localhost:9092";
    private static final String KAFKA_TOPIC = "my-topic";
    private static final String CLICKHOUSE_URL = "clickhouse-url";
    private static final String CLICKHOUSE_USER = "clickhouse-user";
    private static final String CLICKHOUSE_PASSWORD = "clickhouse-password";

    public static void main(String[] args) {
        Properties properties = new Properties();
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, KAFKA_BOOTSTRAP_SERVERS);
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "clickhouse-consumer-group");
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

        try (Consumer<String, String> consumer = new KafkaConsumer<>(properties)) {
            consumer.subscribe(Collections.singletonList(KAFKA_TOPIC));

            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
                records.forEach(record -> processKafkaMessage(record.value()));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static void processKafkaMessage(String message) {
        // 解析 Kafka 消息,获取变更数据
        // 将数据写入 ClickHouse
        writeToClickHouse(message);
    }

    private static void writeToClickHouse(String message) {
        // 实现将数据写入 ClickHouse 的逻辑
    }
}

使用 Kafka 实时同步 MySQL 具有一些优势和缺点:

优势:

实时性高: Kafka 是一个高吞吐、低延迟的消息队列系统,能够提供近实时的数据同步,使得应用能够快速获取最新的数据变更。

消息持久化: Kafka 具有消息持久化的特性,能够保证即使消费者离线一段时间,仍然可以获取之前未处理的消息,确保数据不丢失。

缺点:

一致性保证: Kafka 保证了分区内的消息顺序性,但在整个集群范围内的消息顺序性较难保证。在某些场景下,可能需要额外的手段来保证全局的一致性。

对于小规模的应用,引入 Kafka 可能显得过于笨重,使用轻量级的解决方案可能更为合适。

总结

同步方案

描述

优势

局限性

数据库主从复制

利用数据库自身的主从复制特性,将主数据库的变更同步到一个或多个从数据库。

实现简单,可以提供相对实时的数据同步,适用于读多写少的场景。

主从之间需要稳定的网络连接,伴随主从延迟问题。适用于MySQL、PostgreSQL等数据库。

ETL工具数据迁移

使用专业的ETL工具,如Apache NiFi、Talend等,定期抽取源数据库中的数据,进行数据转换,然后加载到目标数据库中。

可以进行复杂的数据转换和清洗,适用于异构数据库之间的同步。

需要配置合适的调度策略,处理好增量同步和全量同步的问题。

基于数据库触发器的同步

在源数据库中设置触发器,当数据发生变更时触发相应的动作,例如将变更信息记录到一个同步表,目标数据库定期轮询同步表并处理变更。

可以实现较为实时的同步,适用于小规模数据。

需要小心设计触发器,避免对源数据库性能造成过大影响。

手工数据脚本

手动编写数据脚本,将数据从一个数据库插入到另一个数据库中。

简单直接,适用于小规模数据的同步。上线配置,数据割接等

异常情况处理,认为干扰因素。

实时数据同步方案(使用消息队列)

将源数据库的变更操作发布到消息队列,消费者订阅消息并将变更操作同步到目标数据库。

实现实时同步,异步处理对系统性能影响较小。

需要考虑消息队列的可靠性和消费者的幂等性。

结尾

  感谢阅读到最后。本文主要是一些实践中的总结和思考,还有很多值得选择的方案。不足之处,愿意和大家一起探讨并改进。希望本篇文章对你有帮助,也欢迎你加入我们,一起做长期且正确的事情!!!

阅读 1396

IMG_268

码易有道

关注

分享收藏1

3

关注后可发消息

复制搜一搜分享收藏划线

人划线

标签:触发器,同步,tb,数据库,常见,几种,数据,order
From: https://www.cnblogs.com/cherishthepresent/p/17956954

相关文章

  • rm -rf dir删除不了的几种情况
    我勒个去!root用户通过rm-rf竟无法删除文件了!原创 浩道 浩道Linux 2024-01-0907:50 发表于广东关注上方浩道Linux,回复资料,即可获取海量Linux、Python、网络通信、网络安全等学习资料!前言大家好,这里是浩道Linux,主要给大家分享Linux、Python、网络通信、网络安全等相......
  • 一些常见的边缘人工智能框架和库
    一些常见的边缘人工智能框架和库:TensorFlowLite:适用于移动和嵌入式设备的边缘AI框架。它提供了轻量级、高效的模型转换和推理功能。ONNXRuntime:支持多种深度学习框架(如TensorFlow、PyTorch等)的高性能推理引擎。它可以在边缘设备上运行模型,并提供实时推理功能。Microsoft......
  • 常见的HTTP 4xx状态码和错误解析
    Laravel是一个流行的PHP框架,它具有出色的可测试性,可以帮助开发人员在更短的时间内编写可靠的代码。但是,即使使用了这个框架,也可能会出现测试覆盖率较低的情况。测试覆盖率是指代码中已由测试案例覆盖的部分比例。测试覆盖率越高,代码质量越高。在本文中,我们将分享几种技巧,帮助您提......
  • Mysql数据同步至Elasticsearch
    方案对比鉴于Canal是一个基于MySQL二进制日志的高性能数据同步系统,go-mysql-elasticsearch是一个第三方插件的,虽然都可以同步mysql数据到es,由于es官方文档推荐使用canal工具来同步数据,因此主要将Canal的使用方式提供给用户。核心概念名词解释mysqlbinlogMyS......
  • 【机器学习】常见算法详解第2篇:K近邻算法各种距离度量(已分享,附代码)
    本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚......
  • 音视频同步评估方案调研
    视频细分领域:实时视频,即时通讯音视频不同步的原因:发送和接收端处理数据的时延,网络传输时延人类所能感受到音画不同步的最大时间差:20ms(非官方)解决方案:发送端同步,接收端同步,网络传输控制相关技术领域:1、5G新通话2、音视频技术基础3、同步技术4、延时问题5、评估方案6、应用5G新通话Vo......
  • openGauss学习笔记-191 openGauss 数据库运维-常见故障定位案例-出现Error:No space l
    openGauss学习笔记-191openGauss数据库运维-常见故障定位案例-出现Error:Nospaceleftondevice提示191.1出现“Error:Nospaceleftondevice”提示191.1.1问题现象在数据库使用过程中,出现如下错误提示。Error:Nospaceleftondevice191.1.2原因分析磁盘空间不足......
  • 【案例分析】如何实现高精度无线同步控制矿山爆破?
    随着现代社会工业化进程的不断加快,人们对于矿山开采的规模和速度要求越来越高。为了快速推进矿山的开采作业,人们对于炸药威力的要求越来越高。考虑到生产、运输和存储等各个方面的安全性以及国家有关方面的强制要求,雷管的火药填装量是有严格限制的,不允许随意加大。因此人们转而采用......
  • 这些常见的python编码习惯,你都会吗
    本文分享自华为云社区《不得不知的十个常见PY编码习惯》,作者:码乐。简介语言在发展和变化,编码习惯也在发生改变。这里简单聊聊17个python中常见的编码习惯或者风格。1,可变数据结构:注意在函数变量不要使用它deffoo(x=[]): x.append(1) print(x)>>>foo()[1]>>>f......
  • 世微AP3464同步降压恒压IC 4-30V2.4A输出车充专用驱动芯片
    AP3464是一款支持宽电压输入的同步降压电源管理芯片,输入电压4-30V范围内可实现2.4A的连续电流输出。通过调节FB端口的分压电阻,设定输出1.8V到28V的稳定电压。AP3464具有的恒压/恒流(CC/CV)特性。AP3464采用电流模式的环路控制原理,实现了快速的动态响应。A......