首页 > 其他分享 >AtCoder Beginner Contest 335 总结

AtCoder Beginner Contest 335 总结

时间:2024-01-10 12:55:24浏览次数:31  
标签:AtCoder Beginner 335 路径 cin 整数 int 顶点 dp

ABC335总结

A.202<s>3</s>

翻译

给你一个由小写英文字母和数字组成的字符串 \(S\)。
\(S\) 保证以 2023 结尾。
将 \(S\) 的最后一个字符改为 4,并打印修改后的字符串。

分析

两种做法:

  • 直接把最后一个字符改为4,然后输出。
  • 输出前 \(n\) 个字符后输出4

code

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int main ()
{
    string s;
    cin>>s;
    for(int i=1;i<s.size();i++) cout<<s[i-1];
    cout<<4<<"\n";
    //string s;
    //cin>>s;
    //s[s.size()-1]='4';
    //cout<<s<<"\n";
    return 0;
}

B.Tetrahedral Number

翻译

给你一个整数 \(N\)。

请按字典序升序输出所有与 \(x+y+z\leq N\) 相等的非负整数 \((x,y,z)\) 的三元组。

什么是非负整数三元组的字典序?

当且仅当以下条件之一成立时,非负整数\((x,y,z)\)的三元组字典序小于\((x',y',z')\):

  • \(x < x'\);
  • \(x=x'\)和\(y< y'\);
  • \(x=x'\)和\(y=y'\)及\(z< z'\)。

分析

暴力算法,三层循环加判断解决。

code

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;

int n,m,t,a[N];

int main ()
{
    cin>>n;
    for(int i=0;i<=n;i++)
        for(int j=0;j<=n;j++)
            for(int l=0;l<=n;l++)
                if(i+j+l<=n) printf("%d %d %d\n",i,j,l);
    
    return 0;
}

C.Loong Tracking

翻译

高桥制作了一款游戏,玩家要在坐标平面上控制一条龙。

龙由\(N\)部分组成,编号为\(1\)至\(N\),其中\(1\)部分称为

最初,\(i\)部分位于坐标\((i,0)\)处。过程\(Q\)查询如下。

  • 1 C:将头部向\(C\)方向移动\(1\)。这里,\(C\)是 "R"、"L"、"U "和 "D "中的一个,分别代表正\(x\)/方向、负\(x\)/方向、正\(y\)/方向和负\(y\)/方向。除头部外,其他每个部分都会跟随前面的部分移动。也就是说,\(i\)部分\((2\leq i \leq N)\) 移动到部件 \(i-1\) 移动前的坐标位置。
  • 2 p:找出部件 \(p\) 的坐标。

分析

一段固定长度的区间,需要做到在头部插入尾部删除,则可以使用双端队列进行维护,查询操作直接访问即可。

code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int N=1e5+5;

int n,m,a[N];
deque<PII> q;
void insert(char p)
{
    PII u=q.front();
    int x=u.first,y=u.second;
    if(p=='R') q.push_front({x+1,y});
    else if(p=='L') q.push_front({x-1,y});
    else if(p=='U') q.push_front({x,y+1});
    else q.push_front({x,y-1});
    q.pop_back();
}
int main ()
{
    cin>>n>>m;
    int op,p;
    char c;
    for(int i=1;i<=n;i++) q.push_back({i,0});
    while(m--)
    {
        cin>>op;
        if(op==1) cin>>c,insert(c);
        else cin>>p,cout<<q[p-1].first<<" "<<q[p-1].second<<"\n";
    }
    return 0;
}

D.Loong and Takahashi

翻译

问题陈述

有一个网格,网格中有 \(N\) 行和 \(N\) 列,其中 \(N\) 是奇数,最多为 \(45\)。

让 \((i,j)\) 表示从上往下第 \(i\) 行,从左往上第 \(j\) 列的单元格。

在这个网格中,你将放置高桥和一条由\(N^2-1\)部分组成的龙,这些部分的编号为\(1\)至\(N^2-1\),以满足以下条件:

  • 高桥必须放在网格的中心,即\((\frac{N+1}{2},\frac{N+1}{2})\)单元格。
  • 除了高桥所在的单元格外,每个单元格中都必须放置一个龙形部件。
  • 对于每个满足\(2 \leq x \leq N^2-1\)的整数\(x\),龙部件\(x\)必须放置在与包含部件\(x-1\)的单元格相邻的单元格中。
    • 当且仅当 \(|i-k|+|j-l|=1\) 时,单元格 \((i,j)\) 和 \((k,l)\) 被认为是相邻的。

打印一种满足条件的部件排列方式。保证至少有一种排列方式满足条件。

分析

固定一种走法,顺时针绕圈走,方向依次为右下左上。

code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=50;
int n,f[6][5]={{0,1},{1,0},{0,-1},{-1,0}};
int a[N][N];
int main ()
{
    cin>>n;
    int x=1,y=0,t=0;
    for(int i=1;i<=n*n-1;i++)
    {
        int u=x+f[t][0],v=y+f[t][1];
        if(u>=1&&u<=n&&v>=1&&v<=n&&a[u][v]==0) a[u][v]=i;
        else 
        {
            t=(t+1)%4;
            u=x+f[t][0],v=y+f[t][1];
            a[u][v]=i;
        }
        x=u,y=v;
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++) 
        {
            if(i==(n+1)/2&&j==(n+1)/2) cout<<"T"<<" ";
            else cout<<a[i][j]<<" ";
        }
        cout<<"\n";
    }
    return 0;
}

E.Non-Decreasing Colorful Path

翻译

有一个连通的无向图,图中有 \(N\) 个顶点和 \(M\) 条边,其中 \(i\) 条边双向连接顶点 \(U_i\) 和顶点 \(V_i\)。
每个顶点上都写有一个整数,顶点\(v\)上写有整数 \(A_v\)。

对于从顶点 \(1\) 到顶点 \(N\) 的简单路径(一条不多次通过相同顶点的路径),分数的确定方法如下:

  • 假设 \(S\) 是写在路径沿线顶点上的整数序列,按照顶点被访问的顺序排列。
  • 如果 \(S\) 不是非递减,则该路径的得分为 \(0\)。
  • 否则,得分就是 \(S\) 中不同整数的个数。

找出所有简单路径中得分最高的从顶点 \(1\) 到顶点 \(N\) 的路径,并打印该得分。

\(S\) 不递减是什么意思?长度为 \(l\) 的序列 \(S=(S_1,S_2,\dots,S_l)\) 是非递减的,当且仅当 \(S_i \le S_{i+1}\) 为所有整数 \(1 \le i < l\) 时。

分析

算是一道好题,思路比较清奇,一般想法是找到所有简单路径然后判断是否为非递减,计算答案。但所有简单路径的枚举太浪费时间,所以考虑其他做法。

\[dp+并查集 \]

为何能使用 \(dp\)?
点权大的点一定是由点权小的点推导过来的,否则该路径答案就为零,相当于无意义。其次,若所有比 \(i\) 点小的且与 \(i\) 点连通的点已经都用来更新过 \(i\) 点,则 \(i\) 点的值不会再被改变,即满足无后效性。只需要按点权的大小排序,按照边的信息进行更新即可。

\[dp[v]=max(dp[v],dp[u]+1) \]

需要明确一点,由于一条路径上相同的点权只会贡献一个,所以对于相邻的点权相同的点,把他们压缩成一个,使答案记录在最靠近点 \(1\) 的点上。这样就不用考虑两点权值相同的情况,存边时只用存从点权小的到点权大的边即可。

code

#include <bits/stdc++.h>
using namespace std;
const int N=2e5+5;

int n,m,a[N],f[N],dp[N];
struct node 
{
    int w,u,v;
};
vector<node> b;
bool cmp(node x,node y)
{
    return x.w<y.w;
}
int find(int x)
{
    if(f[x]==x) return x;
    else return f[x]=find(f[x]);
}
int main ()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>a[i],f[i]=i;
    for(int i=1,u,v;i<=m;i++)
    {
        cin>>u>>v;
        if(a[u]>a[v]) swap(u,v);
        if(a[u]==a[v]) f[find(v)]=find(u);//将v并入u
        else b.push_back({a[u],u,v});
    }
    sort(b.begin(),b.end(),cmp);
    memset(dp,-0x3f,sizeof(dp));
    dp[find(1)]=1;
    for(auto x : b)
    {
        int u=find(x.u),v=find(x.v);
        dp[v]=max(dp[v],dp[u]+1);
    }
    cout<<max(0,dp[find(n)])<<"\n";
    return 0;
}

标签:AtCoder,Beginner,335,路径,cin,整数,int,顶点,dp
From: https://www.cnblogs.com/zhouruoheng/p/17955634

相关文章

  • ABC335E题解
    洛谷题面感觉有点毒瘤,不过还是有些trick在的。题意翻译(复制于洛谷题面):给定一个\(N\)个点\(M\)条无向边的图,图上每个点都有其颜色。求所有经过点权单调不降的路径中,出现的不同颜色的个数最多是多少。由于是单调不降的路径,所以可以点权大的点到点权小的点的路径对结果没......
  • AtCoder Beginner Contest 295
    B-Bombsd难度:⭐题目大意给定一个n*m的网格,其中'.'表示空白,'#'表示障碍物,数字x表示此处有一个炸弹,会将附近曼哈顿距离小于等于x的格子都变成空白;问所有炸弹爆炸后的网格;解题思路数据范围很小,暴力即可;神秘代码#include<bits/stdc++.h>#definei......
  • AtCoder Regular Contest 167 C MST on Line++
    洛谷传送门AtCoder传送门我是傻逼。很平凡的一个计数。但是不会啊。怎么会是呢。考虑Kruskal求解MSTonLine问题。我们可以想到统计边权\(=a_i\)的出现次数。然后又可以容斥转化成统计边权\(\lea_i\)的出现次数,设其为\(f_i\)。考虑求\(f_i\)。就相当于把\(p\)......
  • AtCoder Beginner Contest 334
    B-ChristmasTrees难度:⭐⭐题目大意小莫从坐标轴的某个位置n种了一棵树,并且每隔m米就再种一棵树,注意是双向的,两边都种;给定一个区间,问这个区间中有多少棵树;解题思路我们可以让区间的边界都减去n,这样区间中的树都位于坐标km上;然后我们把边界都平移到正......
  • AtCoder Beginner Contest 复盘合集
    AtCoderBeginnerContest复盘合集修改链接2023.12.6ABC312VP(OI赛制)这次的ABC相对比较难:红橙黄黄蓝绿绿,Ex(蓝)AlinkB稍微麻烦一点。linkC很水,直接Sort一遍即可。linkD稍微思考,可以得出一个DP,准确来说不太像DPlink【警钟长鸣】我非常的弱智,\(n<=3000\)赛时写......
  • AtCoder Regular Contest 168 F Up-Down Queries
    洛谷传送门AtCoder传送门貌似是第三道问号题?感觉前面这个转化不是人能想到的。。。考虑维护\(y\)的差分序列。更进一步地,我们类比slopetrick,维护一个可重集,里面有\(y_{i+1}-y_i\)个\(i\)(为了方便我们让每次操作时\(y_{m+1}\)加\(1\))。那么一次操作就相当于,插......
  • atcoder
    DPABC275EABC274DABC274EABC271EABC270DABC266D状态机模型ABC265Emap存状态+步骤型遍历(注意DP顺序)+复杂度证明ABC262D关于数字的DP,将一类数字分成一个状态加粗样式ABC261D没啥好说的看题目写DPABC253E关于数字的DPABC251E状态机DPABC197E在一维轴上行走的DP......
  • atcoder补题计划
    DPABC275EABC274DABC274EABC271EABC270DABC266D状态机模型ABC265Emap存状态+步骤型遍历(注意DP顺序)+复杂度证明ABC262D关于数字的DP,将一类数字分成一个状态加粗样式ABC261D没啥好说的看题目写DPABC253E关于数字的DPABC251E状态机DPABC197E在一维轴上行走的DP......
  • AtCoder_abc334
    AtCoder_abc334A-ChristmasPresent题目描述输入两个数\(B,G(B\neqG)\),若\(B\)大,输出Bat,否则输出Glove。解题思路无Code//Problem:A-ChristmasPresent//Contest:AtCoder-UNIQUEVISIONProgrammingContest2023Christmas(AtCoderBeginnerContes......
  • AtCoder Regular Contest 168 E Subsegments with Large Sums
    洛谷传送门AtCoder传送门尝试二分答案,问题变为要求恰好选\(x\)段\(\ges\),最大化选的段数。发现我们不是很会算段数的\(\max\),因为要求段不重不漏地覆盖\([1,n]\)。考虑给每个\(\ges\)段\([l,r]\)一个\(r-l\)的代价,于是变成了算代价的\(\min\)。此时不再要求......