一、实验目的
1.能够理解 POX 控制器的工作原理;
2.通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;
3.能够运用POX控制器编写自定义网络应用程序,进一步熟悉POX控制器流表下发的方法。
二、实验环境
1.下载虚拟机软件Oracle VisualBox 或 VMware;
2.在虚拟机中安装Ubuntu 20.04 Desktop amd64;
三、实验要求
(一)基本要求
1.搭建下图所示SDN拓扑,协议使用Open Flow 1.0,控制器使用部署于本地的POX(默认监听6633端口)
使用命令sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10
搭建上述拓扑
2.阅读Hub模块代码,使用 tcpdump 验证Hub模块;
开启pox,运行hub模块:./pox.py log.level --DEBUG forwarding.hub
使用命令mininet> xterm h2 h3
开启主机终端
在h2主机终端中输入tcpdump -nn -i h2-eth0
在h3主机终端中输入tcpdump -nn -i h3-eth0
- h1 ping h2
- h1 ping h3
由上图可以看出无论是h1 ping h2还是h1 ping h3,h2和h3都能同时接收到数据包。结果验证Hub模块的作用:Hub模块采用洪泛转发,每个交换机上都安装泛洪通配符规则,将数据包广播转发,此时交换机等效于集线器。所以在ping某个主机时,会在另一台主机上接收到。
3.阅读L2_learning模块代码,画出程序流程图,使用 tcpdump 验证Switch模块。
(1)画出流程图
(2)使用 tcpdump 验证Switch模块
开启pox,运行L2_learning模块:./pox.py log.level --DEBUG forwarding.l2_learning
h1 ping h2
h2收到数据包,h3没有收到数据包
h1 ping h3
h3收到数据包,h2没有收到数据包
二)进阶要求
- 重新搭建(一)的拓扑,此时交换机内无流表规则,拓扑内主机互不相通;编写Python程序自定义一个POX模块SendFlowInSingle3,并且将拓扑连接至SendFlowInSingle3(默认端口6633),实现向s1发送流表规则使得所有主机两两互通。
生成拓扑sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10
SendFlowInSingle3代码
from pox.core import core import pox.openflow.libopenflow_01 as of class SendFlowInSingle3(object): def __init__(self): core.openflow.addListeners(self) def _handle_ConnectionUp(self, event): msg = of.ofp_flow_mod() # 使用ofp_flow_mod()方法向交换机下发流表 msg.priority = 1 msg.match.in_port = 1 # 使数据包进入端口1 msg.actions.append(of.ofp_action_output(port=2)) # 从端口2转发出去 msg.actions.append(of.ofp_action_output(port=3)) # 从端口3转发出去 event.connection.send(msg) msg = of.ofp_flow_mod() # 使用ofp_flow_mod()方法向交换机下发流表 msg.priority = 1 msg.match.in_port = 2 # 使数据包进入端口2 msg.actions.append(of.ofp_action_output(port=1)) # 从端口1转发出去 msg.actions.append(of.ofp_action_output(port=3)) # 从端口3转发出去 event.connection.send(msg) msg = of.ofp_flow_mod() # 使用ofp_flow_mod()方法向交换机下发流表 msg.priority = 1 msg.match.in_port = 3 # 使数据包进入端口3 msg.actions.append(of.ofp_action_output(port=1)) # 从端口1转发出去 msg.actions.append(of.ofp_action_output(port=2)) # 从端口2转发出去 event.connection.send(msg) def launch(): core.registerNew(SendFlowInSingle3)
- 基于进阶1的代码,完成ODL实验的硬超时功能。
SendPoxHardTimeOut代码
from pox.core import core import pox.openflow.libopenflow_01 as of class SendPoxHardTimeOut(object): def __init__(self): core.openflow.addListeners(self) def _handle_ConnectionUp(self, event): msg = of.ofp_flow_mod() msg.priority = 3 msg.match.in_port = 1 msg.hard_timeout = 10 #硬超时10秒 event.connection.send(msg) msg = of.ofp_flow_mod() msg.priority = 1 msg.match.in_port = 1 msg.actions.append(of.ofp_action_output(port = of.OFPP_ALL)) event.connection.send(msg) msg = of.ofp_flow_mod() msg.priority = 3 msg.match.in_port = 3 msg.hard_timeout = 10 event.connection.send(msg) msg = of.ofp_flow_mod() msg.priority = 1 msg.match.in_port = 3 msg.actions.append(of.ofp_action_output(port = of.OFPP_ALL)) event.connection.send(msg) def launch(): core.registerNew(SendPoxHardTimeOut)
2.实验收获
主要了解了hub模块与switch模块的区别:
在hub模块中,h1 ping h2、h3,h2和h3都能接收到数据包,因为hub模块采用洪泛转发,交换机会向所有端口进行洪泛转发,所以h2和h3主机都能接收到数据包。
在Switch模块中,交换机会到接收进来的包进行自学习,并从合适的端口发出,所以只有ping的目的主机可以收到报文。
3..实验评价
本次实验动手部分难度不高,照着老师的文档和阅读基本代码模块都能得到实验结果,但是真正理解起来真要命,文档一大堆,试着看过一遍英文文档。通过这次实验学会了pox的一些应用以及tcpdump命令,能够使用tcpdump进行抓包。主要在于阅读py模块代码和帮助文档,由于英文不是很好,看起来很花费时间,由于本周其他课程大作业较多以及课程快要到了结课考试,时间不是很多,因此进阶实验没法完成。看了其他同学的进阶作业,得出结果可能看起来不是很难吧?实在没空阅读文档就略去了。
标签:控制器,POX,h2,h3,开源,ofp,模块,msg,port From: https://www.cnblogs.com/DGKwangye/p/16777859.html