首页 > 其他分享 >MinHash-LSH:如何解决医学大模型的大规模数据去重?

MinHash-LSH:如何解决医学大模型的大规模数据去重?

时间:2023-12-28 14:03:24浏览次数:33  
标签:word 哈希 LSH MinHash 医学 相似 集合




MinHash-LSH 最小哈希 + 局部敏感哈希:如何解决医学大模型的大规模数据去重?

  • 大模型的数据问题
  • MinHash-LSH 最小哈希 + 局部敏感哈希:大规模数据集去重优化
  • Jaccard相似度:用于比较样本集之间的相似性
  • 降维技术 Minhash
  • LSH – 局部敏感哈希
  • MinHash-LSH 多个开源数据集去重



 


大模型的数据问题

问题:训练医学大模型的数据规模真的很大,其中会夹杂很多重复数据。

临床数据:

  • 20 亿条文本数据

教材数据:

  • 1000+ 本指南
  • 7万+ 药品说明书
  • N 个科室疾病培训数据
  • N 本古籍、教材

开源数据:

  • 中文医学命名实体识别CMedEE
  • 中文医学文本实体关系抽取CMedIE
  • 临床术语标准化任务CHIP-CDN
  • 临床试验筛选标准短文本分类CHIP-CTC
  • 平安医疗科技疾病问答迁移学习CHIP-STS
  • 医疗搜索检索词意图分类KUAKE-QIC
  • 医疗搜索查询词—页面标题相关性KUAKE-QTR
  • 医疗搜索查询词—查询词相关性KUAKE-QQR
  • 中文医学命名实体识别CMedEE
  • 中文医学文本实体关系抽取CMedIE
  • 临床术语标准化任务CHIP-CDN
  • 临床试验筛选标准短文本分类CHIP-CTC
  • 平安医疗科技疾病问答迁移学习CHIP-STS
  • 医疗搜索检索词—意图分类KUAKE-QIC
  • 医疗搜索查询词—页面标题相关性KUAKE-QTR
  • 医疗搜索查询词—查询词相关性KUAKE-QQR
  • 医疗搜索查询词—相关性检索KUAKE-IR
  • 阴阳性实体判别CHIP-MDCFNPC
  • 对话实体抽取IMCS-V2-NER
  • 意图标签分类IMCS-V2-DAC
  • 智能诊疗对话症状识别IMCS-V2-SR
  • 诊疗报告生成IMCS-V2-MRG
  • 医疗对话生成MedDG
  • MedDialog-CN https://github.com/UCSD-AI4H/Medical-Dialogue-System
  • IMCS-V2 https://github.com/lemuria-wchen/imcs21
  • CHIP-MDCFNPC https://tianchi.aliyun.com/dataset/95414
  • MedDG https://tianchi.aliyun.com/dataset/95414
  • cMedQA2 https://github.com/zhangsheng93/cMedQA2
  • Toyhom https://github.com/Toyhom/Chinese-medical-dialogue-data
  • michaelwzhu/ChatMed-Consult michaelwzhu/ChatMed-Consult · Hugging Face
  • Huatuo-26M https://github.com/FreedomIntelligence/Huatuo-26M
  • Medical https://huggingface.co/datasets/shibing624/medical
  • 复旦DISC-MedLLM https://github.com/FudanDISC/DISC-MedLLM
  • DoctorGLM https://zhuanlan.zhihu.com/p/657058443
  • MedicalGPT https://zhuanlan.zhihu.com/p/657058443
  • ChatMed:https://zhuanlan.zhihu.com/p/657058443
  • MedQA-ChatGLM:https://zhuanlan.zhihu.com/p/657058443
  • 神农中医药大模型:https://zhuanlan.zhihu.com/p/657058443
  • 70B医学大模型:https://huggingface.co/datasets/epfl-llm/guidelines
  • 澳门理工caregpt:https://github.com/WangRongsheng/CareGPT

MinHash-LSH 最小哈希 + 局部敏感哈希:大规模数据集去重优化

怎么去重呢?

要用到一个炒鸡牛逼的算法:MinHash-LSH

谷歌、亚马逊等公司的许多核心功能都是 MinHash-LSH 实现的。

  • 解法:MinHash-LSH
  • 问题特征:能在大数据中,寻找特征向量相似又不完全相同的情况下,找出尽可能近的样本。
  • 应用场景:亚马逊根据相似度最高的买家的购买历史找到新的商品推荐、谷歌搜索字词与 Google 的索引互联网之间执行相似性搜索、Spotify根据用户音乐风格,寻找匹配的相似度

当有 30 亿级别的集合需要比较时,使用传统的全对全比较方法(即比较任意两个集合是否相似)将变得非常耗时,这种方法的时间复杂度是 O(n^2),随着集合数量的增加,所需的计算时间呈平方级增长。

在很多实际情况下,绝大多数的集合对之间都不相似,这意味着全对全比较中的大部分计算实际上是无用功。

如果能有一种方法能够快速地将可能相似的集合对筛选出来,只对这些潜在相似的集合对进行详细的相似度计算,那么就可以大幅度降低计算成本。

MinHash 和局部敏感哈希(LSH)就是这样一种解决方案:

  • MinHash 是一种哈希技术,可以用来有效地估计集合之间的Jaccard相似度
  • LSH 是用来将那些相似度高的集合哈希到相同的桶中的技术。

只有被哈希到同一个桶中的集合对才需要进行相似度比较,大大减少了比较的数量,从而降低了算法的整体时间复杂度。

时间复杂度从 平方量级 降低到 接近线性复杂度。

MinHash-LSH 的设计逻辑:

  • 一般的hash,原内容发生微小变化后,hash值的变化是无法预估的。
  • 字符串改一个字母后,整个字符串md5变得完全不一样,图片改一个像素后hash值也变得完全不一样。
  • 局部敏感hash的改进在于,原内容发生微小变化后,其hash值也只发生微小变化。
  • 从而满足原内容相近hash值也相近的良好性质。
  • 这种性质的好处在于,可以在hash空间进行近邻检索。

怎么实现这种逻辑呢?

  • 从对内容敏感的信息,变成,对位置敏感的哈希
  • 这种哈希算法,得到的哈希值(或者说指纹),在向量空间中的位置是“敏感”的
  • 两个指纹在向量空间中的相对位置是有意义的,近就是真的近,远就是真的远
  • 而不是如md5一样,在向量空间中的远近和实际含义的远近无关系

Jaccard相似度:用于比较样本集之间的相似性

Jaccard相似度的定义是两个集合交集大小与并集大小之比。

具体来说,如果有两个集合A和B,那么ta们之间的 Jaccard 相似度:

  • MinHash-LSH:如何解决医学大模型的大规模数据去重?_搜索

MinHash-LSH:如何解决医学大模型的大规模数据去重?_搜索_02 表示集合A和集合B的交集中元素的数量。

MinHash-LSH:如何解决医学大模型的大规模数据去重?_数据_03 表示集合A和集合B的并集中元素的数量。

举个列子,集合X = {a,b,c},Y = {q,a,b}。

那 Jac(X,Y) = 2 / 3 = 0.67。

X 和 Y 有 67% 的元素相同。

Jaccard相似度的值范围在0到1之间:

  • 0 表示没有共同元素,即两个集合完全不相似
  • 1 表示两个集合完全相同
  • 在0到1之间的值表示集合之间的部分相似性

Jaccard相似度越高,表示两个集合的相似度越大。

在数据处理中,我们可以使用 jieba 分词库,把一句话分词成各个元素后,计算相似度。

query1 = ["ta喜欢的水果有?"]                          # 分词前
query1 = ['ta', '喜欢', '的', '水果', '有', '?']      # 分词后

query2 = ["ta喜欢的坚果有?"]                          # 分词前
query2 = ['ta', '喜欢', '的', '坚果', '有', '?']      # 分词后

降维技术 Minhash

直接计算数据之间的相似度(Jaccard相似度)会非常耗时,每个集合里面的元素,俩俩比较。

如果大部分集合对之间的相似度都很低,进行俩俩比较会做很多无用功。

传统的方法需要对两个集合的每个元素进行一对一的比较,以确定ta们的相似性。

MinHash 算法通过为每个集合生成一个固定长度的标签(哈希函数产生签名),来代表集合的特征。

  • 原本复杂的集合相似性比较,简化为标签(MinHash值)的比较
  • 比较签名的成本,远低于比较完整的集合

这些签名保留了集合间相似度的信息,还能保持原始数据的相似性。

  • 如果两个集合很相似,Minhash 值也会很相似

但单个 MinHash 值可能无法准确地反映两个集合的相似性,可能是一个偶然的匹配。

在实际应用中,我们会使用数百或数千个哈希函数来增加估计的准确性。

如果大多数哈希函数产生的MinHash值都相同,我们可以有更高的信心认为两个集合是相似的。

  • 解法:MinHash
  • 问题特征:在高维空间中估计稀疏数据集合的相似性,特别是当直接计算成对相似度不可行时。如需要快速而精确地估计大型数据集中集合之间的Jaccard相似度。
  • 应用场景:文本处理中比较文档相似性,如新闻聚类、查重系统;生物信息学中比较基因组序列;推荐系统中评估用户间或物品间的相似性。

这里是为了应用,具体数学公式、概率证明,请猛击《原始论文》。

LSH – 局部敏感哈希

LSH 函数旨在将相似的值放入相同的存储桶中。

MinHash-LSH:如何解决医学大模型的大规模数据去重?_算法_04

LSH 的核心思想是将相似的数据点映射到相同的“桶”(buckets)中,而不相似的点映射到不同的桶中。

这样,当需要找到一个数据点的最近邻时,可以仅在相同桶中的点之间进行搜索,而不是在整个数据集中搜索,大大降低了计算量。

LSH 是基于哈希的技术,其特点是保持局部相似性:相似的输入在哈希后应该产生相似或相同的哈希值。

与传统哈希函数不同,LSH 的目的不是为了避免冲突,而是为了让冲突更可能发生在相似的项之间。

LSH 的具体实现方式有很多,最常见的包括:

  1. MinHash LSH:适用于度量集合相似性(如Jaccard相似性)的LSH。MinHash 将每个集合转换成一个固定长度的签名,该签名是由多个最小哈希值组成的向量,这些最小哈希值由集合中的元素通过多个哈希函数计算得到。
  2. SimHash LSH:用于处理高维特征向量的文本或其他数据的相似性。SimHash 通过哈希函数将特征向量转换为一个固定长度的位串,这样,相似的数据点会产生相似的位串。
  3. Euclidean LSH:适用于欧几里得空间中的数据点。它使用超平面将空间划分成不同的区域,并将落在同一区域内的点映射到同一个桶中。

LSH 算法的详细步骤如下:

  1. 选择适合的 LSH 家族:根据数据的性质和相似性度量选择合适的 LSH 函数。
  2. 定义哈希表和哈希函数:创建多个哈希表,并为每个哈希表定义一个或多个 LSH 函数。
  3. 哈希和存储数据点:使用定义的哈希函数将数据点映射到各自的桶中。
  4. 查询过程:在查询最近邻时,首先计算查询点的哈希值,然后只在对应桶中的点集合中进行搜索,这样可以快速缩小搜寻范围。

LSH 的效率和精度受到哈希函数个数、哈希表数量和桶的大小等参数的影响。

在应用中,这些参数需要根据具体应用进行调整以达到最佳效果。

由于 LSH 是一种概率算法,允许少量的误报(false positives)和漏报(false negatives),但在实际应用中,这通常是可接受的,特别是在处理大规模数据集时,ta提供了显著的速度优势。

  • 解法:LSH(局部敏感哈希)
  • 问题特征:当数据量很大,使得对所有可能的数据对进行比较变得不可行时,需要一种方法能够高效地查找和查询近似最近邻
  • 应用场景:大规模图像或视频检索系统,寻找视觉上相似的内容;文本或文章数据库中寻找相似文档;音频或声音样本匹配;大型数据库中的快速相似项查找

MinHash-LSH 多个开源数据集去重

配置环境包:

pip install jieba datasketch

MinHash-LSH 代码:

import jieba
import re  # 假设这里应该导入 re 而不是 ro
from datasketch import MinHash, MinHashLSH

query = "想人想得厉害的时候,也是淡淡的。像饿了很多日的旅人闻到炊烟,但知道不是自家的。"

sentences = ["想人想得厉害的时候,也是轻轻的。像漂泊很多日的旅人闻到炊烟,但知道不是返乡的。",
             "梦中梦见心上人,也是轻轻的。像漂泊良久的游子见到归帆,却明白并非返乡的。"]

regex = re.compile(",|。")

def split_word(sentence):
    global regex
    return [word for word in jieba.lcut(re.sub(regex, '', sentence)) if word.strip()]

query_lcut = split_word(query)
sentences_lcut = [split_word(sentence) for sentence in sentences]
print(query_lcut)
print(sentences_lcut)

'''
print(query_lcut):
['想人', '想', '得', '厉害', '的', '时候', '也', '是', '淡淡的', '像', '饿', '了', '很多', '日', '的', '旅人', '闻到', '炊烟', '但', '知道', '不是', '自家', '的']
[]

print(sentences_lcut):[
['想人', '想', '得', '厉害', '的', '时候', '也', '是', '轻轻', '的', '像', '漂泊', '很多', '日', '的', '旅人', '闻到', '炊烟', '但', '知道', '不是', '返乡', '的']
['梦中', '梦见', '心上人', ',', '也', '是', '轻轻', '的', '像', '漂泊', '良久', '的', '游子', '见到', '归帆', '却', '明白', '并非', '返乡', '的']
'''

threshold = 0.5   # 相似度 > 0.5
num_perm = 128
lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)
for idx, sentence_lcut in enumerate(sentences_lcut):
    minhash = MinHash(num_perm=num_perm)
    minhash.update_batch([word.encode('utf-8') for word in sentence_lcut])
    lsh.insert("minhash_sentence_{}".format(idx+1), minhash)

print(list(lsh.keys))
# 输出:['minhash_sentence_1', 'minhash_sentence_2']

minhash_query = MinHash(num_perm=num_perm)
minhash_query.update_batch([word.encode('utf-8') for word in query_lcut])
simi_result = lsh.query(minhash_query)
print("Jaccard相似度 > {} 的句子有:{}".format(threshold, simi_result))
# 输出:Jaccard相似度 > 0.5 的句子有:['minhash_sentence_1']  
 
 
# 删除 minhash_sentence_1,从 LSH 中移除查询到的结果,需要对 simi_result 进行遍历
for key in simi_result:
    lsh.remove(key)

print(list(lsh.keys))
# 输出:['minhash_sentence_2']

去重多个开源文件所有数据:

import jieba
import re
from datasketch import MinHash, MinHashLSH

# 此函数用于分词
def split_word(sentence):
    regex = re.compile(",|。|?|!")
    return [word for word in jieba.lcut(re.sub(regex, '', sentence)) if word.strip()]

# 配置参数
threshold = 0.5   # 相似度阈值
num_perm = 128    # MinHash的排列次数

# 初始化LSH对象
lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)

# 假设你有一个函数来获取多个开源文件下所有问答对
# def get_qa_pairs():
#     # 这里应该包含读取文件并返回所有问答回答的代码
#     return qa_pairs

# 读取所有问答回答对
qa_pairs = get_qa_pairs()

# 为每个问答回答创建MinHash并加入LSH
for idx, qa_pair in enumerate(qa_pairs):
    q, a = qa_pair                                   # 假设qa_pair是一个包含问题和答案的元组
    combined_text = q + " " + a                      # 可以根据需要将问题和答案合并或分别处理
    words = split_word(combined_text)
    minhash = MinHash(num_perm=num_perm)
    for word in words:
        minhash.update(word.encode('utf-8'))
    lsh.insert("qa_pair_{}".format(idx), minhash)

# 查询并去重
unique_qa_pairs = []
for idx, qa_pair in enumerate(qa_pairs):
    q, a = qa_pair
    combined_text = q + " " + a
    words = split_word(combined_text)
    minhash = MinHash(num_perm=num_perm)
    for word in words:
        minhash.update(word.encode('utf-8'))
    # 查询相似问答回答
    result = lsh.query(minhash)
    # 如果只有自己或没有其他相似项,则视为唯一
    if len(result) <= 1 or (len(result) == 2 and "qa_pair_{}".format(idx) in result):
        unique_qa_pairs.append(qa_pair)
        # 将此问答回答标记为唯一,可选步骤
        lsh.remove("qa_pair_{}".format(idx))

# 输出去重后的问答对
print(unique_qa_pairs)


标签:word,哈希,LSH,MinHash,医学,相似,集合
From: https://blog.51cto.com/u_13937572/9014089

相关文章

  • 统一大语言模型和知识图谱:如何解决医学大模型-问诊不充分、检查不准确、诊断不完整、
    统一大语言模型和知识图谱:如何解决医学大模型问诊不充分、检查不准确、诊断不完整、治疗方案不全面?医学大模型问题如何使用知识图谱加强和补足专业能力?大模型结构知识图谱增强大模型的方法 医学大模型问题问诊。偏离主诉和没抓住核心。解决方案:建立抗干扰的能力,使得发现用户问题......
  • 南阳医学高等专科学校 外文名Nanyang Medical College 简 称南阳医专
    1951年9月,河南省护理员培训学校南阳分校成立。瓦房6间,草房18间,教职工20人,学员60人,校舍简陋、设备缺乏。1952年,为适应社会需求,开办了医士专业,学校遂更名为“河南省立南阳医士学校”。1958年秋,经河南省政府批准学校升格为“南阳医学专科学校”,连续举办了5年大专教育。1964年秋,更......
  • 医学护理 河南护理十大专科学校
    河南护理十大专科学校排名:1、郑州黄河护理职业学院2、郑州澍青医学高等专科学校3、河南护理职业学院4、河南推拿职业学院5、河南医学高等专科学校6、郑州卫生健康职业学院7、商丘医学高等专科学校8、周口职业技术学院9、信阳职业技术学院10、濮阳医学高等专科学校......
  • 医学影像的图像标注技术:如何实现自动化的图像标注与分析
    1.背景介绍医学影像是一种重要的诊断工具,用于揭示患者的内部结构和功能。医学影像分析通常需要专业医学影像诊断师对图像进行手工标注和分析,这是一个耗时且容易出错的过程。因此,自动化的图像标注和分析技术在医学影像领域具有重要意义。图像标注是一种计算机视觉任务,旨在将图像中的......
  • 人工智能大模型原理与应用实战:大规模模型在医学影像分析中的应用
    1.背景介绍人工智能(AI)和机器学习(ML)技术在过去的几年里取得了显著的进展,尤其是在深度学习(DeepLearning)方面。深度学习是一种通过神经网络模拟人类大脑的学习过程来自动学习表示和预测的机器学习方法。随着计算能力的提高,深度学习模型的规模也逐渐增大,这些大规模模型在许多应用领域......
  • 深度学习与医学影像:诊断辅助与预测分析
    1.背景介绍医学影像是指在医学诊断和治疗过程中采集的图像数据,包括计算机断层扫描(CT)、磁共振成像(MRI)、超声成像(US)、位相成像(PET)、胸片、眼球成像等。随着医学影像技术的不断发展和进步,医学影像数据的规模日益庞大,涌现出了大量的高质量的图像数据。这些数据具有丰富的特征信息,对于深......
  • AI在医学诊断中的应用前景与挑战
    1.背景介绍医学诊断是医学诊断的核心过程,它涉及到医生对患者的症状、体征、检查结果等信息进行分析,从而确定患者的疾病类型和病情程度。随着数据的大规模生成和存储,人工智能技术在医学诊断领域也逐渐发展起来。人工智能(AI)在医学诊断中的应用前景与挑战主要体现在以下几个方面:数据量......
  • 数字化医学影像系统源码,采用C语言开发,支持MPR、CPR、MIP、SSD、VR、VE三维图像处理
    PACS系统是医院影像科室中应用的一种系统,主要用于获取、传输、存档和处理医学影像。它通过各种接口,如模拟、DICOM和网络,以数字化的方式将各种医学影像,如核磁共振、CT扫描、超声波等保存起来,并在需要时能够快速调取和使用。PACS系统还提供了辅助诊断和管理功能,可以在不同的影像设备......
  • 测试开发 | AI与生物医学:加速医学研究的新引擎
    随着人工智能(AI)技术的迅猛发展,生物医学领域迎来了一场革命性的变革。AI不仅在医学研究中发挥着越来越重要的角色,更成为加速科学发现和医疗创新的新引擎。本文将探讨AI在生物医学中的应用,以及它如何推动医学研究取得突破性进展。1. 生物信息学的崭新时代1.1基因组学与蛋白质组学AI......
  • 使用MONAI轻松加载医学公开数据集,包括医学分割十项全能挑战数据集和MedMNIST分类数据
    在深度学习中,使用公开数据集具有以下优点:提供了一个标准化的基准来比较不同算法或模型的性能,因为这些公共数据集被广泛使用,许多研究人员都使用它们来评估他们的方法。可以节省大量的时间和金钱,因为这些数据集已经被标注,从而避免了手动标注数据所需的努力和成本。允许研究人员在自己......